Seed Transfer 2.0

- Seed transfer/AM rationale and risks
- AM using focal point ST system
- Migration distance and CSTD
- AM using hybrid ST system

Douglas-fir – long distance seed transfer

THE FROST HARDINESS OF GEOGRAPHIC STRAINS OF NORWAY PINE'

By C. G. BATES

Silviculturist, Lake States Forest Experiment Station

ORWAY PINE is a species which covers a comparatively narrow latitudinal range, al-

though in its range from the northeastern coast to the Lake States and southern Canada it encounters summer temperature differences of about 10° F. (say from 56° to 66° F., for the four months, from June to September) and considerably greater differences in midwinter temperatures (say from -35° and -40° F. in the northwestern part of the range to not much below zero in the Alleghenies, these being mean annual minima). Nearly as great differences are found in winter if mean January temperatures be considered, or from o° to 30° F.

Because of its great commercial value and its extensive use on reforestation projects, Norway pine has been chosen by the Lake States Forest Experiment Station as the first species to be subjected to a scrutinizing study of geographical, varietal, and individual differences, or in other words to a "breeding" study whose primary purpose is to determine what " seed zones " should be recognized in order to avert failures in planting due to lack of local adaptation. But because of the great uniformity of appearance and development of the species, as well

as the considerations mentioned in the first paragraph above, the writer has felt some doubts as to whether outstanding differences would be likely to be developed by such a study. Therefore, to "anticipate" to some extent the results of field comparisons which were started at the same time through nursery sowings of 41 different collections of Norway pine seed, an indoor experiment was begun which it was hoped would bring out the existence of physiological differences affecting hardiness. Without going into the question of what comprises hardiness to freezing and what causes the tree to prepare itself for freezing temperatures, it may be stated as more or less obvious that differences within a species should develop according as its local forms have become adapted to long or short growing seasons, to high or low growing temperatures, and to moderately or extremely low winter temperatures.

The idea of this experiment was suggested directly by the work of Dr. R. B. Harvey on the hardiness of a great variety of woody and herbaceous plants, and the experiment was made possible by his cooperation and the use of his specially designed equipment for such studies at the University of Minnesota, this being principally in the form of refrigeration rooms which can be set at any reasonable temperature. We wish to express our gratitude for the splendid cooperation given.

The essential results of the experiment here described were given in Technical Note No. 22 of the Lake States Forest Experiment Station under date of January, 1930.

Bates, 1930, Journal of Forestry

Yellow cedar dedine. P. Hennon photo.

Newtools

Seedlot selection system

New analysis techniques

O'Neill, Hamann and Wang. 2008.

New climates

Old and new data

Seed source -1.3 °C Plantation 2.9 °C

- Climate change is likely to have serious negative consequences on forest growth and health
- AM proposed to help maintain adaptation.

- Climate change is likely to have serious negative consequences on forest growth and health
- AM in forestry is about maintaining adaptation of forests and dependent ecosystems.

Genetic strategies for reforestation in the face of global climate change

F. Thomas Lediga and J.H. Kitzmillerb

*Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, P.O. Box 245, Berkeley, CA 94701, USA

*Chico Tree Improvement Center, USDA Forest Service, 2741 Cramer Lane, Chico, CA 95926, USA

(Accepted 9 April 1991)

ABSTRACT

Ledig, F.T. and Kitzmiller, J.H., 1992. Genetic strategies for reforestation in the face of global climate change. For. Ecol. Manage., 50: 153–169.

If global warming materializes as projected, natural or artificial regeneration of forests with local seed sources will become increasingly difficult. However, global warming is far from a certainty and predictions of its magnitude and timing vary at least twofold. In the face of such uncertainty, reforestation strategies should emphasize conservation, diversification, and broader deployment of species, seed sources, and families. Planting programs may have to deploy non-local seed sources, imported from further south or from lower elevations, which necessitates a system for conserving native gene pools in seed banks or clone banks. Planting a diverse array of species or seed sources is a hedge against the uncertainty inherent in current projections of warming. Most tree improvement programs already stress genetic diversity and deployment of multi-progeny mixes, but may better prepare for climate change by testing selections in an even wider set of environments than is now the case.

INTRODUCTION

Numerous stresses threaten forests in the next century. Chlorofluorocarbons will probably deplete the earth's protective ozone layer by 7%, perhaps, reducing yield in some crop plants and forest trees (Caldwell et al., 1989). Other atmospheric pollutants are already destroying forests or changing forest composition in some areas, such as the Los Angeles Basin (Miller, 1973) and the Valley of Mexico. Acid deposition is leaching soils, which may in time affect forest growth even in areas remote from sources of pollution (Schulze, 1989). And finally, mean annual temperatures are projected to increase 2.5°C by the year 2050 as a result of the release of 'greenhouse gases', i.e. methane,

Correspondence to: F.T. Ledig, Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, P.O. Box 245, Berkeley, CA 94701, USA.

- In forestry, AM is about maintaining adaptation.
- Transfers involve short ecological, climate, and geographic distance.

- In conservation biology, AM is about avoiding extinction.
- Transfers often involve long ecological, climate and geographic distance.

Placing Forestry in the Assisted Migration Debate

JOHN H. PEDLAR, DANIEL W. McKENNEY, ISABELLE AUBIN, TANNIS BEARDMORE, JEAN BEAULIEU, LOUIS IVERSON, GREGORY A. O'NEILL, RICHARD S. WINDER, AND CATHERINE STE-MARIE

Table 1. Comparison between forestry assisted migration (AM) and species rescue AM.		
Topic	Forestry AM	Species rescue AM
Intended outcome	Maintain forest productivity and health under climate change	Avoid extinctions among species threatened by climate change
Target species	Widespread, commercially valuable species	Species of conservation concern
Focal biological unit	Focuses on the movement of populations	Focuses on the movement of species
Movement logistics	Often within the current range of the species or within modest range extensions	Often well outside the current natural range of species
Risks	Limited potential for creating an exotic invasive, limited potential to hybridize with new species, and limited potential to introduce disease to new populations or to other species	Some potential for creating an exotic invasive, some potential to hybridize with new species, and some potential to introduce disease to other species
Feasibility of science- based implementation	Provenance data for many commercial tree species, established seed procurement and storage methods, established best practices around plantation establishment, and autecology often well described	Provenance data not typically available, seeds not typically procured or stored, establishment best practices often not known, and autecology well described for relatively few high-profile and well-studied species
Scope	Potential to be employed across the millions of hectares that are regenerated annually in North America	Likely limited to suitable microsites
Cost	Adds little to existing forest regeneration costs (see the text for caveats)	Costs vary widely with the scope of the initiative
Practice	Already implemented in several regions	Very few known cases being implemented

Contents lists available at SciVerse ScienceDirect

Biological Conservation

Perspective

Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change

Ian D. Lunt^a, Margaret Byrne^{b,*}, Jessica J. Hellmann^c, Nicola J. Mitchell^d, Stephen T. Garnett^e, Matt W. Hayward^f, Tara G. Martin^g, Eve McDonald-Maddden^{g,h}, Stephen E. Williamsⁱ, Kerstin K. Zander^e

ARTICLE INFO

Article history:
Received 15 April 2012
Received in revised form 6 August 2012
Accepted 24 August 2012
Available online 29 November 2012

Keywords: Ecological replacement Managed relocation Climate change adaptation Ecosystem management Restoration Translocation

ABSTRACT

Assisted colonisation has received considerable attention recently, and the risks and benefits of introducing taxa to sites beyond their historical range have been vigorously debated. The debate has primarily focused on using assisted colonization to enhance the persistence of taxa that would otherwise be stranded in unsuitable habitat as a consequence of anthropogenic climate change and habitat fragmentation. However, a complementary motivation for assisted colonisation could be to relocate taxa to restore declining ecosystem processes that support biodiversity in recipient sites. We compare the benefits and risks of species introductions motivated by either goal, which we respectively term 'push' versus 'pull' strategies for introductions to preserve single species or for restoration of ecological processes. We highlight that, by focusing on push and neglecting pull options, ecologists have greatly under-estimated potential benefits and risks that may result from assisted colonisation. Assisted colonisation may receive higher priority in climate change adaptation strategies if relocated taxa perform valuable ecological functions (pull) rather than have little collateral benefit (push). Potential roles include enhancing resistance to invasion by undesired species, supporting co-dependent species, performing keystone functions, providing temporally critical resources, replacing taxa of low ecological redundancy, and avoiding time lags in the provisioning of desired functions.

Crown Copyright @ 2012 Published by Elsevier Ltd. All rights reserved.

^{*}Institute for Land, Water & Society, Charles Sturt University, Albury, NSW, Australia

Department of Environment and Conservation, Bentley, WA, Australia

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA

Gentre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, WA, Australia

Research Institute for The Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia

Australian Wildlife Conservancy, Nichols Point, Victoria, Australia

^{*}Climate Adaptation Flagship, CSIRO Ecosystem Sciences, Dutton Park, Qld, Australia

h ARC Centre for Excellence in Environmental Decisions, University of Queensland, St. Lucia, Old, Australia

¹Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Qld, Australia

Seed Transfer 2.0

- Seed transfer/AM rationale and risks
- AM using focal point ST system
- Migration distance and CSTD
- · AM using hybrid ST system

Seed Transfer 2.0

- Seed transfer/AM rationale and risks
- AM using focal point ST system
- Migration distance and CSTD
- AM using hybrid ST system

Illingworth Lodgepole Pine Provenance Test Test site = Community Lake

Illingworth Lodgepole Pine Provenance Test Test site = Community Lake

Illingworth Lodgepole Pine Provenance Test Test site = Community Lake

Illingworth Lodgepole Pine Provenance Test Test site = Community Lake

Illingworth Lodgepole Pine Provenance Test Test site = Community Lake

Seed Transfer 2.0

- Seed transfer/AM rationale and risks
- AM using focal point ST system
- Migration distance and CSTD
- AM using hybrid ST system

Hybrid seed transfer system

		plantation BECvar							
		Α	В	C	D	E			
_	Α	1	1	0	0	1			
prov BECvar	В	0	1	0	0	0			
	C	0	1	1	0	1			
	D	0	0	0	1	0			
O.	E	0	1	1	0	1			

Hybrid seed transfer system

		plantation BECvar							
		Α	В	C	D	E			
	A	1	0	0	0	1			
prov BECva	B	0	1	1	0	0			
	C	0	1	1	0	1			
	D	0	0	0	1	0			
	E	1	0	1	0	1			

I bearing		14/1		:47
Inave	seea.	Where	canı	use it:

I have a cutblock. Where can I get seed?

Seed or plantation

Latitude Longitude

Go

Current BECvar of plantation

Future BECvar of plantation

Procurement or deployment BECvars

Image: Ian Cameron

Assisted Migration Adaptation Trial (AMAT)

Greg O'Neill, Vicky Berger, Michael Carlson, Nick Ukrainetz
Tree Improvement Branch, BC Ministry of Forests, Lands and Natural Resource Operations

Feb 2013

Species SIt	ype S	SPZ Orch	nard_num	Lat	Long	Elev	MAT N	TIMIVVII	MCMT	TD	MAP
At Ps	eudoA At_S	Southint At	Southint .	49.50	120.63	1050	4.3	15	-6.3	21.3	513
Ba Ps	eudoA Ba_S	Southht Ba	Southint	49.65	121.10	1175	4.9	14.9	-4.6	19.5	2215
Bg Ps	eudoA Bg	_Koot B	g_Koot 4	49.45	117.48	850	5.7	16.8	-5.6	22.4	966
BI Ps	eudoA BI_S	Southint BI	Southint 5	50.98	119.70	1524	2.3	13.3	-8.3	21.6	733
Owro Cla	ass A M	Low	140	49.83	124.66	229	8.3	18.1	1.7	14.3	2364
Owri Ps	eudoA Owr	i_Koot O	vri_Koot 5	50.72	118.61	410	4.8	16.1	-7.1	23.2	834
Ep Cla	ass A sou	uthBC S	cim_Kal	50.61	118.67	670	5.4	16.9	-6.7	23.6	705
Fdc Cla	ass A	SM	181	50.38	123.16	558	5.8	15.5	-3.8	19.3	1867
Fdc Cla	ass A M	Low	188	49.22	123.43	409	8.4	16.4	1.3	15.1	2351
Fdc Cla	ass A Coos	BayOR Coo	sBay OR	43.39	124.03	238	11.4	17.2	6.2	11.0	1763
Fdc Cla	ass A Long	view WA Lon	gview WA 4	48.21	122.72	335	10.0	17.5	2.7	14.8	1893
Fdc Cla	ass A Spring	gfield OR Spri	ngfield OR	44.03	122.63	447	11.2	18.9	4.7	14.2	1541
Fdi Cla	ass A F	PG	225	53.58	122.78	772	3.2	14.5	-9.7	24.2	648
Fdi Cla	ass A	QL.	228	52.35	120.92	925	32	14.3	-8.9	23.2	681
Fdi Cla	ass A	CT	231	52.74	122.17	853	3.6	14.7	-8.9	23.7	591
Fdi Ca	ass A 1	NE	321	50.74	118.63	641	5.5	17.0	-6.6	23.6	824
Fdi Ca	ass A 1	NE	324	50.13	117.71	1088	4.1	15.7	-7.6	23.3	926
Fdi Cla	ass A	ID Ch	erry Lane 4	47.44	116.40	870	6.9	17.9	-3.5	21.4	895
Hwi Ps	eudoA Hv_M	lonashee Hw_	Monashee :		119.10	800	5.2	16.7	-7.0	23.6	867
Hwc Ca	ass A M	Low	133	50.32	125.53	139	8.5	15.8	2.0	13.7	2308
Hwe Cla	RSS A	M	198	49.53	123.53	773	6.6	15.0	-0.8	15.8	2575
Lw Cla	ass A NE	Low	332	49.83	117.83	865	4.9	16.5	-6.9	23.4	828
Lw Ca	ass A	EK	333	49.85	115.70	1096	3.7	15.9	-9.1	25.0	640
Lw Cla			IC/USDA 4	48.36	116.30	1120	5.5	18.9	-5.5	22.4	901
Lw Ps	eudoA (OR Othor	oNatFor 4	44.33	120.04	1501	8.9	17.0	-1.1	18.2	754
Pli Ca	ss A (CP	218	54.08	123.40	798	2.7	14.2	-10.3	24.5	645
Pli Cla	895 A B	BV	219	53.49	123.51	858	3.0	14.2	-9.4	23.5	662
Pli Ca	ass A PG	Low	222	52.84	121.85	827	3.7	14.9	-8.6	23.5	710
Pli Cla	ss A TO	Low	311	50.53	119.07	952	4.7	16.0	-7.1	23.0	631
Pli Cla	ass A NE	Low	337	50.69	119.18	910	5.1	16.4	-6.7	23.2	670
Pli Ps	eudoA Pli_lE	TIC_MO Pli_	ETIC_MO 4	47.84	115.64	792	6.1	17.6	-5.4	23.0	960
		Low			123.85	660	7.7	15.7	0.7	15.0	1762
100000	855 A F	KQ	335	47.59	116.04	1157	5.9	16.8	-3.9	20.7	1189
Py Cla	iss A	ID I	Plains 4	47.98	115.28	897	7.0	18.6	-4.6	23.3	805
Py Ps	eudoA Py_S	Southht Py	Southint	50.28	121.40	580	6.3	17.8	-5.8	23.6	539
		(Al			124.04	65	9.1	16.9	2.1	14.8	1572
1000		PG			124.80	942	1.7	13.3	-10.8	24.1	642
		PG			122.94	834	2.8	14.3	-10.2	24.5	886
		то			120.04	965	4.8	15.6	-8.7	22.3	522
200		то			120.33	1329	3.2	14.0	-7.4	21.4	604
1000		EK			115.83	1192	2.8	14.9	-10.5	25.4	786
10000		Mid			118.42	1180	3.4	14.6	-8.1	22.7	845
10000		High			119.57	1633	1.3	12.1	-9.5	21.6	1003
Sx Cla		NE	341	50.51	114.81	524	5.4	17.0	-7.6	24.6	727
Sx Cla	ess A E	BV	620	54.33	126.52	792	2.7	13.7	-9.4	23.1	561
Sx Ps	A STATE OF THE PARTY OF THE PAR			48.03	115.19	1052	6.1	17.5	-4.9	22.4	718
	ass A M	I All CLI	RShedge 4	49.67	124.28	1000	5.4	14.2	-1.9	16.1	3100
Ya Ps					117.70	1700	22	13.7	-9.2	22.8	1180

Methods

48 orchard seed sources from 15 native western North American tree species

Abies amabilis - Amabilis fir
Abies grandis - Grand fir
Abies lasiocarpa - Sub-alpine fir
Betula papyrifera - Paper Birch
Callitropsis nootkatensis - Yellow cypress
Larix occidentalis - Western larch
Picea glauca × P. engelmannii - Interior spruce
Picea sitchensis - Sitka spruce
Pinus contorta - Lodgepole pine
Pinus monticola - Western white pine
Pinus ponderosa - Ponderosa pine
Populus tremuloides - Trembling aspen
Pseudotsuga menziesii - Douglas-fir
Thuja plicata - Western redcedar
Tsuga heterophylla - Western hemlock

Methods

Establish seedlots at 48 test sites spanning wide climate and latitudinal range

Website

http://www.for.gov.bc.ca/hre/forgen/interior/AMAT.htm

For more information, please visit the US Forest Service Reforestation, Nurseries & Genetics Resources website at http://rngr.net