
Other common names. Florida arrowroot, sago [palm] cycad, comptie, Seminole-bread.

Growth habit, occurrence, and use. Coontie is a cycad (a low, palm-like plant) with the trunk underground or extending a short distance above ground. It is native to Georgia, Florida, and the West Indies and is found in pine-oak woodlands and scrub, and on hammocks and shell mounds. About 30 Zamia species are native to the American tropics and subtropics. Zamia classification in Florida has long been the subject of controversy. Traditionally, several species have been recognized, but many botanists now believe that all Zamia taxa in Florida belong to a single species (FNAEC 1993).

The taproot gradually contracts, pulling the plant downward, leaving only the upper part of the stem above soil level. Coontie fixes nitrogen in upward-growing branching roots that terminate in nodules with cyanobacteria (Dehgan 1995). Coontie lacks lateral buds and thus has no true lateral branches. However, branching sometimes does occur, by division of the terminal bud (Dehgan 1995). The leaves are pinnately compound with dichotomously branched parallel veins. The seeds remain attached to the seedlings for 2 or more years after germination. The cotyledons never emerge from the seed (Dehgan 1995).

Coontie was once common to locally abundant but is now considered endangered in Florida. The starchy stems of coontie, after water-leaching to remove a poisonous glycoside, were eaten by the native people and early settlers (FNAEC 1993; Witte 1977). It is considered a good candidate for local landscaping (Witte 1977).

Flowering and fruiting. Coontie is a cycad, a cone-bearing gymnosperm, with male and female cones appearing on different plants. The male cones are cylindrical, 5 to 16 cm long, and often clustered 2 to 5 per plant. The female cones are elongate-ovoid, up to 5 to 19 cm long (LHBH 1976; FNAEC 1993). The period of receptivity and maturation of seed is December to March (FNAEC 1993). Insects (usually beetles or weevils) pollinate coontie. Good seed set is helped by hand-pollination (Dehgan 1995).

Collection of cones, extraction, and storage. Two seeds are produced per cone scale. The seeds are drupe-like, bright orange, 1.5 to 2 cm long (FNAEC 1993). The seeds may be collected from dehiscing cones in the winter (January in Gainesville, Florida). The pulpy flesh should be partially dried by spreading out the seeds to air-dry for about a month. Then, the pulp should be removed and the seeds should be washed, scrubbed, and air-dried (Witte 1977). Another method involves soaking the seeds 24 hours in water, then putting the seeds with moist sand in a wide-mouth jar and using a variable-speed drill with an attached long-stemmed wire brush to remove the fleshy seed coat (sarcotesta) without damaging the stony layer (sclerotesta) (Dehgan and Johnson 1983). Seeds stored for 1 year at 5 °C germinated as well as or better than fresh seeds (Witte 1977).

Pregermination treatments and germination tests. The fleshy seedcoats contain a growth inhibitor; the stony layer is up to 2 mm thick and is impermeable to water; and the embryo is partially dormant (Dehgan and Johnson 1983). Germination often takes 6 to 12 months. Removal of the fleshy seedcoat and scarification of the stony layer by cutting or cracking resulted in germination of 80 to 100% in 1 week (Smith 1978). Soaking seeds in sulfuric acid for 1 hour followed by 48 hours in gibberellic acid yielded a 92% germination in 6 weeks with intermittent mist (Dehgan 1996). Seeds average 340/kg (154/lb).

Nursery practice and seedling care. Cycads need well-drained soil with a pH of 6.5. The best growth occurs with a combination of slow-release fertilizer and monthly application of 300 ppm 20:20:20 N-P-K liquid fertilizer.
Seedlings should be provided with micronutrients applied once or twice per year or fertilizers that contain micronutrients should be used (Dehgan 1996). For prevention of root rot, the soil should not be allowed to remain wet longer than 1 to 2 days. The only major insect problems are with magnolia scale (Neolecanium cornuparvum (Thro)) and mealybugs (Pseudococcus spp.) (Dehgan 1996). Root pruning helps to develop branched roots. The roots should be clipped where they join the stem, the cut surface dipped in indole butyric acid (IBA), and the plants misted for 2 weeks (Dehgan 1996).

References

Growth habit and use. Most of the prickly-ashes—Zanthoxylum spp.—are large shrubs or small trees. The 3 species considered here are listed in table 1. In some areas they provide food and cover for wildlife. Their deciduous foliage is very aromatic, and the bark and fruit were once used for medicinal purposes, both as home remedies and in the drug industry (Vines 1960). The wood of espino rubial is used for boxes, pallets, local construction, and some furniture (Francis 1991).

Flowering and fruiting. The greenish white dioecious flowers are borne in inconspicuous axillary cymes on common prickly-ash and in large terminal cymes 5 to 15 cm in length on Hercules-club and espino rubial (figure 1) (Sargent 1965; Francis 1991). Phenological data are summarized in table 2. Prickly-ash fruits are globose, single-seeded capsules 5 to 6 mm in diameter. During ripening, they turn from green to reddish brown. At maturity, the round, black, shiny seeds hang from the capsules (figures 1–3).

Collection, extraction, and storage. Seeds may be stripped from clusters of mature capsules by hand as the capsules open, or entire clusters of unopened capsules may be picked when they turn reddish brown. Unopened capsules will discharge their seeds with gentle flailing after several days of air-drying. Seeds can be separated from capsule fragments by screening or winnowing (table 3). There are no storage test data known for this genus, but the seeds are probably orthodox in storage behavior. They can be dried to 10% moisture content without loss of viability, and seeds of common prickly-ash showed practically no loss in germinability after 25 months of storage in sealed containers at 5 °C (Bonner 1974).

Figure 1—Zanthoxylum clava-herculis, Hercules-club: cluster of mature fruits.

Table 1—Zanthoxylum, prickly-ash: nomenclature, occurrence, and size

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name(s)</th>
<th>Occurrence</th>
<th>Height at maturity (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. americanum Mill.</td>
<td>common prickly-ash, toothache-tree, northern prickly-ash</td>
<td>Quebec to North Dakota, S to Oklahoma & Georgia</td>
<td>8</td>
</tr>
<tr>
<td>Z. clava-herculis L.</td>
<td>Hercules-club, toothache-tree, southern prickly-ash, single-tongue, pepperbark</td>
<td>Oklahoma & Virginia, S to Florida & Texas</td>
<td>9–15</td>
</tr>
<tr>
<td>Z. martinicense (Lam.) DC.</td>
<td>espino rubial, jina macho, agia, yellow hercules, bosí</td>
<td>Greater & Lesser Antilles, Trinidad & Tobago, E Venezuela</td>
<td>20–25</td>
</tr>
</tbody>
</table>

Table 2—Zanthoxylum, prickly-ash: phenology of flowering and fruiting

<table>
<thead>
<tr>
<th>Species</th>
<th>Flowering</th>
<th>Fruit ripening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. americanum</td>
<td>Apr–May</td>
<td>June–Aug</td>
</tr>
<tr>
<td>Z. clava-herculis</td>
<td>Apr–June</td>
<td>July–Sept</td>
</tr>
<tr>
<td>Z. martinecense</td>
<td>Apr–May*</td>
<td>Aug–Sept</td>
</tr>
</tbody>
</table>

* Primarily but throughout the year in some areas.

Germination. Seeds of common prickly-ash and Hercules-club exhibit strong dormancy, apparently imposed by the seedcoat. Scarification with concentrated sulfuric acid for 2 hours at about 21 °C has given fair results for Hercules-club, and stratification in moist sand for 120 days at 5 °C has helped germination of common prickly-ash (Bonner 1974). Germination of treated seeds of both species has been tested at diurnally alternating temperatures of 20 to 30 °C. (table 4). Seeds of espino rubial may have a similar dormancy, but there are no conclusive data. Untreated seeds sown in Puerto Rico produced only 5% germination (Francis 1991).

Table 3—Zanthoxylum, prickly-ash: seed data

<table>
<thead>
<tr>
<th>Species</th>
<th>Place collected</th>
<th>Seed moisture (%)</th>
<th>Range /kg</th>
<th>Average /kg</th>
<th>Cleaned seeds/weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. americanum</td>
<td>Minnesota</td>
<td>—</td>
<td>48,100–72,590</td>
<td>56,490</td>
<td>25,600 3</td>
</tr>
<tr>
<td>Z. clava-herculis</td>
<td>Mississippi</td>
<td>10</td>
<td>33,100–37,050</td>
<td>35,000</td>
<td>15,900 2</td>
</tr>
<tr>
<td>Z. martinecense</td>
<td>Puerto Rico</td>
<td>—</td>
<td>75,000</td>
<td>34,020</td>
<td>—</td>
</tr>
</tbody>
</table>

Until more effective pregermination treatments are developed, fall sowing of untreated seed immediately after collection is recommended. Germination is epigeous (figure 4). Vegetative propagation from root cuttings and suckers is also possible (Dirr and Heuser 1987).

Table 4—Zanthoxylum, prickly-ash: germination test conditions and results

<table>
<thead>
<tr>
<th>Species</th>
<th>Pregermination treatment</th>
<th>Daily light (hr)</th>
<th>Medium</th>
<th>Temp °C</th>
<th>Rate</th>
<th>Germination %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. americanum</td>
<td>Stratified*</td>
<td>24</td>
<td>Sand</td>
<td>30</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Z. clava-herculis</td>
<td>H$_2$SO$_4$</td>
<td>8</td>
<td>Blotterpaper</td>
<td>30</td>
<td>20</td>
<td>45</td>
</tr>
</tbody>
</table>

* In moist sand at 5 °C for 120 days.

Sources: Bonner (1974).

Figure 4—Zanthoxylum americanum, common prickly-ash: seedling development at 1 (left bottom), 3 (left top), 13, and 18 days after

References

human consumption in Asia and Europe, the fruits from trees grown in the United States have apparently not been as edible. The crisp flesh of common jujube is whitish in color and has a sweet to subacid taste (Mowry and others 1953; Goor 1955; Vines 1960).

Collection, extraction, and storage. Jujube drupes may be picked by hand or flailed onto canvas sheets in the fall. Stones can be depulped by running them through a macerator with water and floating off the pulp. The cleaned stones are used as seeds. Seed yields are as follows (Goor 1955; Bonner and Rudolf 1974):

<table>
<thead>
<tr>
<th>Common jujube</th>
<th>Christ-thorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaned seeds/weight of drupes—</td>
<td>kg/45 kg (lb/100 lb)</td>
</tr>
<tr>
<td>—</td>
<td>12–16 (25–35)</td>
</tr>
<tr>
<td>Cleaned seeds/weight—</td>
<td>kg (lb)</td>
</tr>
<tr>
<td>—</td>
<td>1,650 (750)</td>
</tr>
</tbody>
</table>

No conclusive storage data are available for this genus, but dry storage at room temperature has been successful for Christ-thorn (Goor 1955). Because these seeds appear to be orthodox, storage at low moisture contents at 5 °C is suggested.

Pregermination treatments. Jujube seeds are moderately dormant and require treatment for prompt germination. Stratification recommendations for common jujube are 60 to 90 days in moist sand at 5 °C (Bonner and Rudolf 1974) or 3 months warm incubation, followed by 3 months cold stratification (Dirr and Hesner 1987). Some growers recommend scarification in sulfuric acid for 2 to 6 hours, followed by stratification at 5 °C for 60 to 90 days (Lyrene 1979).

Growth habit and occurrence. There are about 100 species of this genus, which is composed of trees, shrubs, and lianas found chiefly in the tropical and subtropical regions of the world (Johnston 1963). There are 7 species native to the United States and Mexico, but none of them are of economic importance (Lyrene 1979). However, 2 exotic species, which are small deciduous trees, have been planted in this country for fruit production, wildlife food, and watershed protection (table 1). Common jujube—

Ziziphus jujuba Mill.—the most commonly planted species, may grow to heights of 15 m at maturity (Vines 1960). This species has been cultivated for about 4,000 years in China and grown in this country for over 150 years (Bonner and Rudolf 1974; Lyrene 1979; Mowry and others 1953). Both common jujube and Christ-thorn—*Z. spina-christi* Willd.—are highly valued for fruit production and numerous agroforestry uses in Africa and Asia (von Carlowitz 1986), where there are many selected cultivars.

Flowering and fruiting. The perfect, yellow flowers of common jujube appear in March to May in the United States, and the reddish-brown fruits mature from July to November. The fruits are globose to slender, fleshy drupes, which turn from green to dark reddish brown at maturity. If left on the tree, the fruits will turn black (Bailey 1939; Vines 1960). Common jujube drupes are oblong and 2.5 to 5 cm in length. They contain a 2-celled and 2-seeded pointed stone that is deeply furrowed, reddish brown to deep gray, oblong, and 2 to 2.5 cm long (figure 1) (Bonner and Rudolf 1974; Mowry and others 1953). Trees bear fruit as early as 1 to 4 years after planting (Lyrene 1979). Good crops are borne annually, and although they are popular for

Table 1—*Ziziphus*, jujube: nomenclature and occurrence

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name(s)</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. jujuba Mill.</td>
<td>common jujube, jujube, Chinese date</td>
<td>Native to Asia, Africa, & SE Europe; planted in 5 US from Florida to California, naturalized along Gulf Coast from Alabama to Louisiana</td>
</tr>
<tr>
<td>Z. spina-christi Willd.</td>
<td>Christ-thorn</td>
<td>Native to arid & semi-arid regions of Africa & W Asia; planted in SW US</td>
</tr>
</tbody>
</table>

Sources: Bonner and Rudolf (1974); Vines (1960).
prompt germination was obtained for seeds of Christ-thorn in Israel by soaking them for 2 days in water at 21 to 38 °C. Shorter or longer periods were not as successful (Gindel 1947).

Germination tests. Germination tests with seeds treated as described above are summarized in table 2.

<table>
<thead>
<tr>
<th>Species</th>
<th>Germination test conditions</th>
<th>Germination rate</th>
<th>Germination %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp (°C)</td>
<td>Amt</td>
<td>Avg</td>
</tr>
<tr>
<td>Z. jujuba</td>
<td>Sand</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Z. spina-christi</td>
<td>-3</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Shorter or longer periods were not as successful (Gindel 1947).

Nursery practice. Untreated stones of common jujube can be sown in drills in the fall; stones stratified for 90 days may be sown in the spring. They should be covered with 2.5 cm (1 in) of soil (Bonner and Rudolf 1974). In Israel, 2 days of water-soaking prior to sowing has been recommended for Christ-thorn (Gindel 1947). Intact drupes may also be sown in the nursery (Goor 1955). Germination is epigeal. Vegetative propagation is possible by root cuttings (Dirr and Heuser 1987).

Figure 1—Ziziphus jujuba, common jujube: longitudinal section through 2 seeds in a stone (left), exterior view of a seed after removal from a stone (center), exterior view of a seed (right).

References

Other common names. spineless hopsage, apple-bush, saltbush.

Growth habit, occurrence, and use. Siltbush is an autumn-deciduous shrub or sub-shrub ranging from 0.1 to 0.8 m in height (Goodrich and Neese 1986). Stems of the current year are thornless and erect or ascending, branching from a persistent, woody base. Leaves are gray-scurfy and entire to lobed. Overwintering leaf buds are prominent, axillary, and globose (Welsh and others 1987).

A narrowly distributed edaphic endemic, siltbush is largely restricted to the Colorado River drainage of central and eastern Utah and northeast Arizona, southwest Wyoming, western Colorado, and northwest New Mexico (Smith 1974; Stutz and others 1987; Welsh and others 1987). It grows in isolated monotypic populations on weathered, often saline or seleniferous, fine-textured to sandy substrates in desert shrub to lower juniper communities at elevations from 1,280 to 2,240 m (Goodrich and Neese 1986).

Although a poor competitor, siltbush is a stress-tolerant species capable of surviving on sites unfavorable for establishment of other species and enduring long periods of adverse environmental conditions. It is a potential revegetation species for mined lands and other disturbed sites within its native range (Pendleton and others 1996).

Geographic races and hybrids. Type specimens of *Zuckia brandegei* were originally described as *Grayia brandegei* Gray (Gray 1876). Stutz and others (1987) later identified 2 chromosome races. Diploid populations (2X = 18) are small plants with narrow, linear leaves that are mostly restricted to south-central Utah and northeastern Arizona. Tetraploids (4X = 36) are larger plants with large ovate to lanceolate leaves that occur primarily as isolated populations in northeastern Utah, south-central Wyoming, eastern Colorado, and northwestern New Mexico. Based on distribution patterns and interpopulation differences, Stutz and others (1987) suggested that the larger plants may be autotetraploids of polyphyletic origin and designated them *G. brandegei* A. Gray var. *plummeri* Stutz and Sanderson var. nov. in honor of A. P. Plummer, pioneer shrub scientist.

Welsh (1984) and Welsh and others (1987) transferred *G. brandegei* to the genus *Zuckia*, renaming it *Z. b. (Gray)* Welsh & Stutz ex Welsh var. *brandegei* and reduced *Z. ari- zonica* Standley to *Z. b. Welsh & Stutz ex Welsh var. arizonica* (Standley) Welsh. *Z. b. var. arizonica* is diploid (Sanderson 2000) and is found in scattered populations from northern Arizona to northeastern Utah (Goodrich and Neese 1986). Dorn (1988) later transferred *G. b. var. plummeri* to *Z. b. var. plummeri* (Stutz & Sanderson) Dorn. Transfers from *Grayia* to *Zuckia* were made on the basis of fruit morphology, branching pattern, and pubescence type. Goodrich and Neese (1986) concurred with these distinctions but with the reservation that *Grayia* “could logically be expanded to include Zuckia.”

Naturally occurring hybrids of siltbush with shadscale (*Atriplex confertifolia* (Torr. And Frem.) Wats.) and Castle Valley clover (*A. gardneri* (Moq.) D. Dietr. var. *cuneata* (A. Nels.) Welsh) were reported by Drobnick and Plummer (1966). Blauer and others (1976) obtained viable seeds, but no seedlings, by artificially pollinating pistillate flowers of fourwing saltbush with tetraploid siltbush pollen.

Flowering and fruiting. All siltbush varieties are monoeocious and heterodichogamous (Pendleton and others 1988). Plants are protogynous (producing pistillate, then staminate flowers) or protandrous (producing staminate, then pistillate flowers) in about equal numbers. Within each plant, temporal separation of pistillate and staminate phases is nearly complete, generally precluding self-fertilization.
Staminate flowers each consist of 4 or 5 stamens and a 4- or 5-lobed perianth. They develop in clusters of 2 to 5 in bract axils (Goodrich and Neese 1986; Welsh and others 1987). Pistillate flowers are 1 to several in bract axils with each enveloped by 2 united bracts. The bracts are either dor-siventrally flattened and unequally 6-keeled with the seed horizontal (Z. b. var. arizonicus) (figures 1 and 2) or obocon-pressed and thin-margined with the seed vertical (Z. b. var. brandegei and Z. b. var. plummeri) (Goodrich and Neese 1986; Welsh and others 1987) (figures 1 and 2). Plants of all varieties flower in late spring or summer and fruits ripen in mid to late summer or fall (Blauer and others 1976; Pendleton and others 1988) (table 1).

Protogynous plants generally produce more seeds, but protandrous plants may be equally productive in wet years or in years with low seed predation (Pendleton and others 2000). Fruits are dispersed slowly, with some usually remaining dormant on the plant through winter (Blauer and others 1976). Seeds are light yellowish brown at maturity (Hurd and Pendleton 1999) (figure 3). The outer layer of the seedcoat is elastic when imbied. The embryo is well developed, with pale yellow cotyledons and an elongate, inferior radicle encircling the perisperm (figure 3). Seedling development is epigeal (figure 4).

Collection of fruits and seed extraction and cleaning. Fruits are collected by hand-stripping or beating and air-dried. Coarse debris may be removed with an air-screen machine or a seed blower, or by screening. Careful rubbing to remove bracts prevents radicle damage. The final product may consist of debracted utricles (Meyer and Pendleton 1990; Pendleton and Meyer 1990) or seeds (figure 3).

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Flowering</th>
<th>Fruit ripening</th>
<th>Seed dispersal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. brandegei</td>
<td>Central Utah</td>
<td>Mid-June-Aug</td>
<td>Late Sept-early Oct</td>
<td>Jan or later</td>
</tr>
<tr>
<td></td>
<td>Uinta Basin, Utah</td>
<td>May-June</td>
<td>Sept</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Sanpete Co., Utah</td>
<td>Mid-May-July</td>
<td>July-late Sept</td>
<td>Sept 10-Dec 15</td>
</tr>
</tbody>
</table>

Sources: Blauer and others (1976), Goodrich and Neese (1986), Pendleton and others (1988), Plummer and others (1968).
constant temperatures (15 to 30 °C) when water is available (Meyer and Pendleton 1990). Seeds of cold-winter populations are dormant at fall and winter temperatures, germinating in early spring following exposure to overwinter chilling. Germination generally increased with duration of wet prechilling at 1 °C for up to 8 weeks, dry after-ripening for up to 14 months, or removal of bracts (Meyer and Pendleton 1990; Pendleton and Meyer 1990).

Techniques and criteria recommended for characterizing normal seedlings, excising embryos, and testing viability are as described for spiny hop sage (Shaw 1992):

- Normal seedling—Epigeal, with thin, 10- to 15-mm-long hypocotyls; small, narrow cotyledons; short epicotyl; and well-developed root hairs (figure 4).
- Excised embryo—Seeds soaked in water at 28 °C for 12 hours and then drained can have their embryos excised with sharp needles; these embryos germinate rapidly at 15/5 or 15 °C and should be evaluated for presence of normal seedlings.
- Viability—Seeds soaked in water at 28 °C for 12 hours, and then drained can be pierced through the perisperm with a sharp probe or needle, then they are

Figure 3—Zuckia brandegei, siltbush: bracted utricle (top left), seed (top right), utricle (bottom left), and embryo (bottom right).
 soaked in a 1% 2,3,5-triphenyl tetrazolium chloride solution for 4 to 8 hours at 28 °C; the seedcoat is translucent after soaking, making excision unnecessary for evaluation of staining.

Nursery culture and direct seeding. Because few data are available, recommendations for spiny hopsage (see Grayia, page 567) may be used as guidelines for establishing siltbush from seed. Based on studies conducted in south-central Utah, Monsen (1996) found that siltbush seedlings develop more rapidly than those of spiny hopsage. Root systems of bare-root stock are much more extensive after 1 growing season. Palatability is low to moderate (Monsen 1996; Stutz 1995). Plants may attract rodents, other small animals, and occasionally deer.

Table 2—Zuckia brandegei, siltbush: fruit and seed characteristics

<table>
<thead>
<tr>
<th>Species</th>
<th>Bracted utricles (x1,000)/weight</th>
<th>Seeds (x1,000)/weight</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. brandegei var. arizonica</td>
<td>372–1,061</td>
<td>169–481</td>
<td>732</td>
<td>332</td>
<td>1,080–1,481</td>
<td>549–794</td>
</tr>
</tbody>
</table>

Figure 4—Zuckia brandegei, siltbush: seedling development.

References

