THE CHINESE CHESTNUT GENOME: A REFERENCE FOR SPECIES RESTORATION

Margaret E Staton¹, Charles Addo-Quaye^{2,3}, Nathaniel Cannon^{2,4}, Tetyana Zhebentyayeva², Matthew Huff¹, Shenghua Fan⁵, Emily Bellis⁶, Nurul Islam-Faridi⁷, Jiali Yu¹, Nathan Henry¹, Daniela I. Drautz-Moses⁸, Rooksana E. Noorai⁹, Stephen Ficklin¹⁰, Chris Saski¹¹, Mihir Mandal^{12,13}, Tyler K Wagner², Nicole Zembower², Catherine Bodénès¹⁴, Jason Holliday¹², Jared Westbrook¹⁵, Jesse Lasky⁶, Laura L Georgi¹⁵, Frederick V Hebard¹⁵, C. Dana Nelson^{5,16}, Stephan C Schuster⁸, Albert G Abbott^{2,5}, John E Carlson²

¹University of Tennessee, Institute of Agriculture, Knoxville, TN; ²Schatz Center for Tree Molecular Genetics, Pennsylvania State University, University Park, PA; ³Division of Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID; ⁴Department of Biology, Southern Utah University, Cedar City, UT; ⁵Forest Health Research and Education Center, University of Kentucky, Lexington, KY; ⁶Department of Biology, Pennsylvania State University, University Park, PA; ⁷USDA Forest Service, Southern Research Station, College Station, TX; ⁸Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798; ⁹Clemson University Genomics and Bioinformatics Facility, Clemson, SC; ¹⁰Department of Horticulture, Washington State University, Pullman, WA; ¹¹Department of Plant and Environmental Sciences, Clemson University, Clemson SC; ¹²Virginia Polytechnic University, Blacksburg, VA; ¹³Department of Biology, Claflin University, Orangeburg, SC; ¹⁴UMR Biodiversité Gènes et Communautés, French National Institute for Agricultural Research (INRA), 69 route d'Arcachon, 33612 CESTAS Cedex – France; ¹⁵The American Chestnut Foundation, Meadowview, VA; ¹⁶USDA Forest Service, Southern Research Station, Saucier, MS

The American chestnut (*C. dentata*) is one of the most well-known and studied examples of near total mortality of a forest tree across its native range due to exotic diseases. It is one of the few species with large-scale genomics-enabled breeding programs, which rely on introgression of resistance genes from Asian chestnut species. To support the efforts to restore American chestnut, we assembled a chromosome-scale reference genome from the Chinese chestnut (*C. mollissima*) cultivar 'Vanuxem'. Comparative genomics with peach (*Prunus persica*) and oak (*Quercus robur*) reveal largely conserved genome organization, including across key quantitative trait loci (QTLs), but also significant expansion and contraction of particular gene families. Resequencing of 5 *C. dentata* and 5 *C. mollissima* genotypes enabled analysis of signatures of selection, providing insights into the evolution of resistance to chestnut blight (*Cryphonectria parasitica*) and new candidate resistance genes. With this genomic resource as well as additional upcoming resources, chestnut is becoming a promising platform for forest tree genotype-to-phenotype research and for leveraging genomics in species restoration.