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A wide range of commercially important traits in forest tree breeding may be referred to as 
complex, where a situation-specific approach will make genetic improvement as efficient as 
possible. The most common approach in current programs is to treat all traits as purely 
polygenic, assuming the classical “infinitesimal model” (Fisher 1918). The objective of our 
research is to quantitatively evaluate breeding strategies using marker-directed population 
improvement (MDPI) (Nelson and Echt 2004). In these strategies, the complex nature of 
commercial traits is reflected in predicting both polygenic and quantitative trait loci (QTL) 
genetic effects, and combining these into a single selection criterion. We review here the 
development of the computer simulation model that will enable this research. With the help of 
the model, it is possible to assess impact of several parameters, such as the density and 
information content of markers flanking the QTL, and the relative effect of the QTL on the trait’s 
phenotype. The effects of these variables can be analyzed within the context of a regular 
recurrent selection strategy, where the main objective is the genetic response in a production 
population. Proportional reduction in gene diversity, cost, and time components can also be 
evaluated. 

SIMULATION MODEL 

The basic model features were derived from the stochastic simulation model POPSIM™ [initial 
reference by Mullin and Park (1995), and the review of the most recent version by Lstibůrek et. 
al (2005)]. We assume a single “breeding population” being managed over a number of 
successive, non-overlapping generations. The population consists of NT individuals; the 
population size is held constant. Mating within each generation is declared, and any possible 
mating scheme can be implemented. Following mating, NC individuals (progenies) are generated 
for each family. The full set of families is referred to as the “recruitment population”, which then 
serves as a pool of candidates for forward selection. Environmental conditions are assumed 
homogeneous across generations.  

Individual phenotypic values can be modeled as a function of independent genetic and 
environmental components. The genetic component is subdivided into two causal factors, 
polygenic and QTL, in what is commonly referred to as a “mixed-inheritance model” (Gomez-
Raya and Klemetsdal, 1999). The polygenes are assumed to be distributed throughout the 
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genome (following the infinitesimal model assumptions), while the QTL is assumed to reside in 
a particular genome position. A number of QTL loci can be declared. Individuals in the 
population are genotyped for any number of polymorphic loci flanking the QLT(s) (neutral 
markers with respect to the trait). Different types of markers can be simulated, such as SNPs or 
SSRs, where the variables of interest are the number of alleles per locus, their respective 
frequency, and the distribution of marker loci across the genome. 

A QTL locus may reside anywhere within a given chromosome; the actual position is declared in 
terms of recombination distance from marker loci residing on the same linkage group. The 
recombination frequency is used when generating genotypes of individual progenies, using the 
random-walk algorithm, as implemented by Crosby (1973). Individual polygenic values are 
simulated assuming the infinitesimal model (the method is presented in detail by Mullin and 
Park, 1995). The effect of the QTL ( ) is calculated (following Lstibůrek et al. 2005) as: 

  (1) 

where λ is the proportion of the additive genetic variance explained by the QTL, h2 is the 

narrow-sense heritability, VP is the phenotypic variance, and p is the initial frequency of the A 
allele at the QTL (alleles in the founder population are sampled from a uniform distribution with 
mean p).  

The dissection of the phenotypic observation into causal components is performed within a 
mixed-model framework introduced by Fernando and Grossman (1989). The following naming 
conventions as well as basic model assumptions are similar to those used by Villanueva et al. 
(2002). The mixed-model equations in the matrix formulation are as follows: 

  (2) 

where X, Z, and W are known incidence matrices; A is the additive relationship matrix; G is a 
matrix of marker-QTL effects (genotypic relationship matrix);  and  are variance ratios in 
the founder population;  is a vector of estimated fixed effects; and  and  are vectors of 
predicted random effects of polygenes and QTL, respectively. We use the rapid method of Pong-
Wong et al. (2001) for calculating the gametic IBD matrix, which is later converted to the 
genotypic matrix, G (see Nagamine, 2005) and supplied as input to the ASReml2 software 
(Gilmour et al. 2006) along with other required information. Data in advanced generations 
accumulate and full-pedigree information is used in the genetic evaluation (extending back to 
founders, as well as including all selection candidates in all generations) by Best Linear 
Unbiased Prediction (BLUP) (Mrode, 2005). 
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Under the MDPI strategy, both polygenic and QTL components enter the BLUP analysis, and the 
resulting breeding value (bv) of an individual i is the respective sum of both effects: 

  (3) 

When marker data is not utilized in the prediction, the breeding value is predicted in the regular 
fashion as: 

  (4) 

In this latter strategy, the QTL effect is not properly separated from the polygenic genetic effect 
(therefore not properly accounted for). Thus, one can evaluate the difference due to the added 
value of marker information contributing to the selection criterion. 

The best set of trees is then selected based on predicted breeding values and group coancestry, 
using group-merit selection (Lindgren and Mullin 1997), where a weighting is applied to group 
coancestry to control the proportional reduction in gene diversity. A full range of weight factors 
can be considered, resulting in two extreme situations (strong family selection and balanced 
within-family selection), and a number of values between these two extremes.  

The approach introduced here makes use of the restricted maximum likelihood (REML) 
implemented by the ASReml2 software; variances are therefore considered unknown, and are 
estimated based on the phenotypic and marker data supplied with each ASReml2 call 
(generation). We believe that this approach is more realistic compared to assuming true 
variances, as performed in many other simulation models published in the scientific literature. In 
combination with a powerful method to calculate the inverse of G matrix, a proportion of the 
individuals may have missing records. This newly developed simulation model also offers the 
potential to assess the utility of early-age selection, which is likely where marker-aided selection 
can most economically enhance the efficiency of forest tree breeding programs. 
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