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Abstract: Predicted breeding values were validated using realized gains estimated from
large-rectangular-plot field trials from the first generation breeding population of slash
pine (Pinus elliottii var. elliottii Engelm.) in the Southeast. These 43 realized gain trials
consisted of three types: 1) rust resistant and rust susceptible material growing in high
rust hazard sites in the Best Management Practices study (5 trials), 2) material selected
for growth by the Cooperative Forest Genetics Research Program at the University of
Florida (19 trials), and 3) Improved and unimproved material established by the
Plantation Management Research Cooperative at the University of Georgia (19 trials).
All trials contained slash pine seedlots collected from unrogued or lightly rogued first
generation seed orchards. Multiple regression analyses were conducted to validate
predicted breeding values calculated for each seedlot considering pollen background.
Observed realized gains for each seedlot were used as the dependent variable, while site
variables (site index and rust hazard) along with the predicted breeding values were used
as independent variables. BLP values predicted for rust resistance were reasonably
accurate, and most of the known variation in rust incidence was accounted for by the
predicted breeding values. Conversely, validation of BLP-predicted volume breeding
values was difficult due to excessive noise in the data for individual tree volume and
stand yield. The use of highly replicated medium-size rectangular plots is suggested to
overcome this problem of imprecise field data from realized gain trials.

Keywords: Tree improvement, realized gains, breeding values, validation, block plots,
slash pine, Pinus elliottii.

INTRODUCTION

The underlying breeding value of an individual is the sum of the average effects of the
alleles that it carries (Falconer and Mackay 1996). Breeding values are predicted from
genetic trails containing an observed sample of offspring from a given parent using the
mean value of that progeny (Falconer and Mackay 1996). Thus, progeny tests provide
estimations of how future offspring will perform under operational conditions (White and
Hodge 1987). The estimation of breeding values is an important and useful tool in tree
improvement programs, where having accurate and precise predictions is fundamental in
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making reliable decisions to maximize genetic gains (White and Hodge 1987, White and
Hodge 1988, Hodge and White 1992).

The Cooperative Forest Genetics Research Program (CFGRP) at the University of
Florida planted many open-pollinated (OP) and control-pollinated (CP) progeny tests in
the southeastern USA in order to predict breeding values of their first-generation
selections of slash pine (Pinus elliottii var. elliottii Engelm.). in 1995, volume and rust
resistance breeding values for 2,491 first-generation selections were predicted using best
linear prediction (BLP) and using data from about 500 OP and CP progeny tests planted
from the 1960's to 1990, generally in randomized complete block designs with row plots
(White et al. 1996).

Because volume breeding values are meant to accurately predict genetic gains for a given
progeny above unimproved controls under operational conditions, it is desirable to
validate these predictions using a large set of realized gain trials established with large
rectangular plots. Unlike row-plot or single-tree-plot trials, large rectangular-plot trials
resemble operational planting conditions where all entries compete evenly across time
(Foster 1989, Lambeth et al. 1994). However, rectangular plots have low statistical
precision (Dhakal et al. 1996), and many trials are needed for reliable validation of a
priori expectations.

Slash pine breeding value predictions have not been extensively validated using large
rectangular plots. However, several studies have compared average realized and
expected gains, especially in rust resistance. Comparisons of realized gain against
conventional predicted values (Sohn and Goddard 1979), against 1988 BLP breeding
values (Hodge et al. 1993) and against 1995 BLP breeding values (Lopez-Upton et al.
2000, Vergara et al. in review, Vergara et al. in preparation) have been conducted. One
in-depth validation study in slash pine using data from 175 CP row-plot and single-tree-
plot trials (Dhakal 1995) found that 1988 BLP breeding values in rust resistance and
volume over-estimated the realized gains by 31% and 47%, respectively. These findings
were used to adjust the 1995 BLP predictions (White et al. 1996).

The aim of this study is to validate the 1995 BLP breeding values for rust resistance and
volumes using observed rust incidence and stand yield realized gains estimated for 187
seedlot-trial combinations from a total of 43 field trials established with large block plots.
The specific objectives were to: 1) Validate the accuracy of rust resistance breeding value
predictions (R50s) values); 2) Validate the accuracy of individual tree volume breeding
value predictions (BVVs); and 3) Assess the impact of rust hazard and site index on the
accuracy of breeding values.

MATERIALS AND METHODS

Realized Genetic Gain Trials

The database for validating slash pine BLP predicted breeding values included realized
gain trials planted in the Southeast with large rectangular plots of genetically improved
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material and unimproved controls. The 43 trials were planted between 1977 and 1987 by
the Best Management Practices study (5 BMP trials), CFGRP (19 trials), and the
Plantation Management Research Cooperative at the University of Georgia (19 PMRC
trials). All trials contained first-generation several types of OP slash pine progenies from
unrogued or lightly rogued seed orchards (Table 1). Experimental design, age, location,
site index, and rust hazard information of each trial are described by Vergara et al. (in
review) for the BMP trials and by Vergara et al. (in preparation) for the CFGRP and
PMRC trials.

Type of Progenies # improved
seedlots/trial

Unimproved
controls

#
Trials

# Reps
BreedingValue'
R50 BVV

Single OP-families
(CFGRP trials)

19-22 UF checklot 3 3 43.9 12.3

10-12 UF checklot 3 3-4 42.3 11.6

9-10 None 4 2-4 42.42 6.1
2

Bulk seed orchard
mixtures (CFGRP trials)

1-3
UF checklot
and/or others

9 4-10 48.3 9.1

Mixture of 6 rust-
resistant families (BMP
trials)

1
Rust

susceptible
mixture

5 3 31.4 2.5

Mixture of 6 families + 1
OP-family (PMRC trials) 2 Unimproved

bulk seedlot
19 1 39.3 15.3

Table 1. Slash pine progenies in 43 realized gain trials used to validate the 1995 BLP breeding values.

'Adjusted BLP-breeding values (White et al. 1996) in percentage, averaged across all seedlots from a
specific type taking into account pollen background (R50=rust incidence breeding value and BVV=volume
breeding value). 2Value adjusted to the difference between each family and the breeding value of the
family taken as the unimproved control.

Calculation of Realized Genetic Gains

Plot-level data were used to obtain least square means (LSM) for each improved seedlot
(I) in each trial. Each record also had the LSM for unimproved value (U) averaged
across all the controls in the trial. The final database included 187 records containing
LSM for percentage rust incidence (RUST), average volume of living trees (TREEVOL),
and mean annual increment (MAI, extrapolated to a per-area basis) for both improved
and unimproved material. To compute RUST, data from the youngest measurement age
were used, since the effect of mortality could bias the RUST estimations (Anderson et al.
1986, Schmidt and Allen 1997). For TREEVOL and MAI, data from the measurement
age closest to rotation age were used in each trial. Additionally, the trial's rust hazard
(RHAZ, estimated as RUST from the unimproved control(s)) and site index (SI, at 25
years as estimated from the data for the unimproved control(s)) were included in the final
database (Vergara 2003).

145



Percentage of realized gain in rust resistance was calculated as the incidence on each
improved seedlot, I, adjusted to the rust hazard level in each site, as follows. RUST on I
was transformed to adjusted incidence (I50) using the hypothesis of proportiona1
resistance (Hodge et al. 1993) through the equation 150=(I*50)/rust hazard, where I was
average RUST on the improved seedlot and rust hazard was the RUST value on U, the
unimproved control. Thus, 150=(I/U)*50 , where 150 was the realized rust incidence
adjusted to an environment in which unimproved material would have 50% rust
incidence. Therefore, an 150 smaller than 50% means positive realized gain in rust
resistance. I5Os were estimated only for sites with a rust hazard greater than 15%
(Lopez-Upton et al. 1999), because low rust incidence levels have small variances (White
and Hodge 1987) and because the proportional resistance hypothesis is not applicable on
low-rust-hazard sites (Hodge et al. 1993).

Realized gains for TREEVOL and MAI were estimated as percentage gains
(G _ TREEVOL or G _ MAI=((I-U)/U)*100, respectively), and as the non-percentage

idifference between improved and unimproved material (DIF_TREEVOL or DIF_MAI=
I-U in m3 and m3 ha-1 year-1 , respectively).

Predicted Breeding Values

The first-generation R50s and BVVs currently used in slash pine were predicted in 1995
by the CFGRP using about 500 OP and CP progeny tests planted from the 1960's to 1990
(White et al. 1996). R50s were expressed as the predicted percentage of infection when
unimproved material would have a 50% rust incidence (50% rust hazard environment);
consequently, low values of R50 indicate high rust resistance. BVVs were expressed in
percentage superiority above unimproved material.

To assign the correct predicted breeding value for every seedlot used in the validation, it
was necessary to consider that improved seedlots (I) such as single families, family
mixtures, or bulk-seed-orchard seedlots were obtained from wind-pollinated first-
generation seed orchards. Thus, the seedlot's predicted breeding values were affected by
pollen from other clones in the orchard and/or by pollen from external unselected
populations. When reliable information was available, the seed orchard pollen
contribution was calculated by averaging breeding values across the clones that were
present at the time that the seed was collected, weighted according to the number of
ramets of each clone. When information was not available, R50=50% and BVV=10%
were used for the male contribution to the seedlot.

Pollen coming from external sources was considered to be undomesticated with
R50=50% and BVV=0%, the same as unimproved controls (U). This contaminating
pollen also affects the adjusted breeding value of an orchard wind-pollinated seedlot.
Pollen contamination in fully productive seed orchards may be between 5% and 50%
with values commonly from 20-40% in different pine species (Wang et al. 1960,
Friedman and Adams 1985, El-Kassaby et al. 1989, Lai and Chen 1997). Thus, 30%
pollen contamination was assumed in this study, and the computation of all adjusted
breeding values reflected this value. For example, for seed from a single mother with
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R50=35% and BVV=19%, in the seed orchard, the adjusted R50 would be 35% x 0.5
(mother contribution) + 50% x 0.5 x 0.7 (pollen from the seed orchard) + 50% x 0.5 x 0.3
(pollen from external sources) = 42.5%. Likewise, the adjusted BVV would be 19% x
0.5 (mother contribution) + 10% x 0.5 x 0.7 (pollen from the seed orchard) + 0% x 0.5 x
0.3 (pollen from external sources) = 13%, assuming an orchard in which the clones
averaged R50=50% and BVV=10%. Henceforth, the adjusted R50s and BVVs for
single-family, mixed-family, and bulkseed orchard collections are denoted simply as
R50s and BVVs, respectively.

Validation of Breeding Values Using Regression Analysis

If parental BLP-breeding value,: are precise and accurate, offspring performance should
be directly predictable by the adjusted breeding values of each seedlot evaluated in
realized gain trials (White and Hodge 1989, Mrode 1996). To validate current breeding
values predicted by the CFGRP (White et al. 1996) and to examine the influence of site
index and rust hazard on the realized gains, multiple regression analyses (Rawlings et al.
1998) were conducted with PROC GLM in SAS (SAS 1990). Realized rust infection in
percentage (150), TREEVOL realized gain in percentage (G_TREEVOL), and MAI
realized gain in percentage (G_MAI) were regressed against BVV, R50, SI, RHAZ, and
the two, three, and four way interactions among those variables. Also, variables
DIFTREEVOL (TREEVOL I-U difference in m3) and DIF_MAI (MAI I-U difference in
m3 ha-1 year-1) were regressed against all variables except BVV, which was replaced by
predicted deviation in volume between I and U in m3 , (DEV using age 15 data with mean
individual volume = 0.108 m 3 , White et al. 1996). Each regression using growth-related
variables as dependent variables had 187 observations, one for each seedlot-trial
combination from 43 trials with 146 single-family lots, 24 mixed families, and 17 bulk
seed orchard collections. Regressions using 150 as dependent variable had only 140
observations, with 122 single-family lots, 10 mixed families, and 8 bulk seed orchard
collections, because seedlots growing in trials with rust hazard <15% were not used in the
analysis.

"Backwards elimination" stepwise regression (Rawlings et al. 1998) was used to choose
the most parsimonious model as follows: 1) Start with the full model (including all main
effects and their interactions) and drop non-significant effects of the highest order
interactions; 2) Run the reduced model dropping all non-significant terms; and 3)
Continue this process until all terms were significant and the model had a reasonable
biological interpretation. Type III sums of squares were utilized to define non-significant
effects with p>0.1. Adjusted R 2 (adj-R2) was used to compare models with different
number of parameters (Rawlings et al. 1998).

RESULTS AND DISCUSSION

Validation of R50s

The regression analysis relating the observed 150 values for each seedlot to their
predicted R50s and other site factors provided a final model that included R50, BVV,
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RHAZ, and the interaction BVV x RHAZ with an adj-R2=0.386. However, BVV and
BVV x RHAZ effects were not biologically interpretable, meaning that graphical
analyses did not reveal any logical or important trends. So, a new backwards elimination
round was conducted starting with a full model excluding BVV. The new final model
I50=1.169*R50-0.1839*RHAZ was the most parsimonious explanation for 150 with an
adj-R2=0.361, similar to that obtained for the model including the BVV effects. In this
new model, the general intercept was not significantly different from zero (p=0.3135).
Therefore, it was dropped and the intercept changed across different levels of rust hazard,
although having the same slope among those levels (Figure la).

In the final model, R50s alone did not adequately predict observed ISOs. Rather, RHAZ
was required to predict R50 in different rust hazard environments (Figure 1 a). Also, the
slope of 1.169 was significantly different from the expected value of 1.000 if R50s
unbiasedly predict field rust resistance expressed as ISO. So, the accuracy of predicting
field performance by BLP R50 values is compromised by rust hazard of the site and a
slight over prediction of 150 by R50. Interestingly, the most accurate predictions
occurred when R50 values were near the same rust hazard level. For example, R50s
between 15 and 30% predicted accurately the ISO values at rust hazard = 20% but were
biased at 60%. Similarly, R50s between 60 and 70% were accurate in predicting 150s at
rust hazard = 60% but biased at 20% (Figure lb). ISO values are calculated by adjusting a
given rust incidence to a 50% rust hazard environment using the hypothesis of
proportional resistance (Hodge et al. 1993), and the accuracy of R50 predictions rests on
the reliability of this hypothesis. Therefore, these results are evidence that rust resistance
is not completely proportional across different rust hazard environments. The difference
between predicted and realized rust incidence values (R50=31.4% and 150=21.9%) found
by Vergara et al. (in review) in the BMP trials could be explained in part by this bias,
where the R50=31.4% might be biased in predicting the ISO, under predicting rust
resistance by approximately 3%, since the average rust hazard was 43% in the BMP trials
(Figure 1).

Figure 1. Relationship between realized (I50) and predicted (R50) percentage rust incidence at
three levels of rust hazard (RHAZ) representing approximately one standard deviation below the
mean (20%), the mean (40%), and one standard deviation above the mean (60%) rust hazard for the
43 trials: a) Regression of 150s on R50s according to 150=1.169*R50-0.1839*RHAZ (adj-R2=0.361),
b) Bias of the predictions, measured as the absolute difference between R50 and 150.

148



Additionally, to validate the general predicting quality of R50s, the relationship between
R50 and 150 was assessed through the simple linear regression model 150 = ß0 + ß 1 *R50.
The analysis showed a moderately positive correlation between R50 and ISO (1=0.563).
This model's low adj-R2=0.317 indicated that the precision for predicting 150 values was
low and influenced by factors other than R50s; however, the highest adj-R 2 obtained from
the multiple regression analysis was 0.386, indicating that other unknown factors may be
involved in rust resistance and/or that a higher experimental precision must be achieved
by using more and better replicated trials. Although the 150 equation (150—
13.18+1.29*R50) had intercept and slope significantly different from the expected values
for accuracy ß0=0 and ß1=1, respectively), the predictions were reasonably unbiased
(Figure 2). 150 was slightly over predicted for R50s smaller than 45%, meaning R50
predicts that a seedlot will get slightly more rust than actually observed, and slightly
under predicted for seedlots with R50s greater than 45%. In other words, at R50 <45%,
R50s predict seedlots to be slightly more susceptible than observed and vice versa above
45%. However, the bias was never more than a few percent.

In general, most studies comparing predicted and realized rust incidence in slash pine
have been done across different levels of rust hazard, and most of them have
demonstrated that average ISO values are very well predicted by R50s, with differences
always smaller than 4% (Sohn and Goddard 1979, Hodge et al. 1993, Lopez-Upton et al.
2000, Vergara et al. in review, Vergara et al. in preparation). These previous studies
agree with the general results found here. Even though the 1995 R50s (White et al. 1996)
seem reasonably accurate, adding weight to the hypothesis of inflated variances in the
1988 R50s (Dhakal 1995), further research must inspect the behavior of rust resistance at
different levels of rust hazard to confirm or to correct the hypothesis of proportional
resistance.
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Validation of BVVs

When G_TREEVOLs were regressed against BVV and other regressors including
RHAZ, SI, R50, and all two, three, and four-way interactions, the final model including
only significant terms had 12 effects including R50 and some of its interactions with a
low adj-R2=0.221. Because this model did not have a reasonable biological
interpretation, a new full model was analyzed deleting R50 and all its interactions. In this
new analysis, the most parsimonious model was:

G TREEVOL=5.744*BVV + 0.0645*SI - 0.23202*BVV*SI
with an adj-R2=0.214.

This adj-R2 was similar to the final model obtained using all the variables, showing either
that the terms that were dropped, while statistically significant, contributed very little
toward explaining the variability of G_TREEVOL or that BVV and R50 were colinear in
explaining the variation of G_TREEVOL (i.e., high covariance between BVV and R50).

Using the latter model, BVV predicted G_TREEVOL very well at some SIs, but not well
in others (Figure 3a). To determine the slope of each regression line, the mode1 was
solved for SI=18, 21 and 24 m (approximately –1, 0 and +1 standard deviations from the
mean SI of 43 trials), resulting in the following partial models;

When SI is 18 m, G_TREEVOL=1.16+1.57*BVV,
When SI is 21 m, G_TREEVOL=1.35+0.87*BVV, and
When SI is 24 m, GTREEVOL=1.55+0.17*BVV.

The best predictions were at SI=21m, with a slope close to 1 (0.87). At low SIs (i.e.,
SI=19m), BVV underestimated G TREEVOL, and at high SIs (i.e., SI=24m) BVV_
strongly overestimated G_TREEVOL (Figure 3b). Consistently low G_TREEVOLs for
good sites, regardless of seedlot BVV, might be related to having selected trees in low SI
stands in the 1950s through 1960s, as the selections may have been adapted to restricted
nutritional conditions and high competition. When growing in near optimal conditions,
with fertilizer, mechanical soil preparation and/or herbicide, the genetic advantages of the
selected trees may not be displayed.

Another possible explanation is the scale effect of measuring gains in percentage. If
there is a constant gain in TREEVOL across site indices, the percentage gain would be
smaller when site indices are larger and larger in poor site indices, as is observed in
Figure 3a. To test this idea, DIF_TREEVOL (TREEVOL I-U difference in m 3) was
regressed against same former variables, after replacing BVV with DEV (predicted
deviation in volume between I and U in m 3). In the final model,
DTF TREEVOL=0.5076*DEV (adj-R2=0.048), SI was not significant in explaining
absolute gains and therefore confirmed some scale effect in measuring gains as a
percentage.
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Figure 3. Relationship between realized gain in individual tree volume (G_TREEVOL) and predicted
volume breeding values (BVV) at three levels of site index (SI) representing approximately one
standard deviation below the mean (18m), the mean (21m), and one standard deviation above the mean
(24m): a) Regression of G TREEVOL on BVV according to G_TREEVOL=5.744*BVV + 0.0645*SI
- 0.23202*BVV*SI (adj-R2=0.214 ), b) Bias of the predictions, measured as the absolute difference
between TREEVOL  and BVV.

Since all regressions of realized gains in individual tree volume had low adj-R 2 values,
two factors that could confound both the assessment of individual tree volume gains and
the prediction of BVV through BLP should be considered: 1) since rust mortality favors
individual tree volume by providing more space to the living trees, BVVs from row-plot
data could be impacted by a seedlot's rust resistance and observed realized gains in block
plots could also be impacted, and 2) the measurements of G_TREEVOL from the 10 to
18 years used in the analysis could confound realized gains if age affects performance.

The full model regression of realized gains in stand yield (G_MAT) on BVV and RHAZ,
ST, R50, and all two, three, and four-way interactions produced an extremely low adj-
R2=0.07. As for TREEVOL , the DTF MAT (MAT I-U difference in m3 haT1 year 1 ) was
regressed against the same regressors (except replacing BVV by DEV), and the adj-R 2

was again very low. Thus, these results provide little insights about the relationships
among the studied variables.

Most of the variation found in G_MAT in this study is likely due to experimental noise.
Realized gains in MAT were not significantly influenced by any of their most probable
predictors such as BVV, R50, RHAZ, or their interactions. Mortality not due to rust
infection, such as from poor microsites, plantation effects, lightning, and other causes
probably greatly influenced the realized gains in stand yield. With the database analyzed
here, it was not possible to validate or determine if the BVVs are accurately predicting
stand yield.

Variation in microsites can greatly affect within-replication uniformity in field trials. To
compare the volume performance of seedlots, progeny tests should have a replication size
smaller than 0.1 ha (Matheson 1989). These realized gain trials usually exceeded this
limit, and replication numbers were low. Both problems clearly contributed to the
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excessive noise found in this study. We suggest trials with medium-size plots (i.e., 36 to
49 total trees, 16 to 25 measurement trees), no more than six entries per replication, and
at least 10 replications to overcome these problems. However, a simulation study should
be done before to estimate a sufficient design to maximize the amount of information
obtained and statistical precision.

CONCLUSIONS

Validation of predicted rust resistance breeding values by comparing expected to realized
rust incidence (R50 to 150) in 43 trials suggests that the 1995 R50s are reasonably
accurate, although they are not very precise. Also, there is evidence that higher rust
incidence is predicted by R50 in low rust hazard sites than in high rust hazard sites,
which suggests that the hypothesis of proportional resistance should be revised. Most of
the known variation in rust incidence can be assigned to the R50s; however, the influence
of rust hazard levels should not be ignored when making new predictions.

Validation of BVVs was difficult using either individual tree volume or stand yield
realized gains in large rectangular plots. BVVs were better correlated with realized gains
in individual tree volume than with realized gains in stand yield. Realized gains in
individual tree volume were predicted imprecisely by BVVs, with very different
accuracies depending on the level of site index, being most accurate for seedlots tested in
trials with average site indices (approximately 21 m) but less accurately for trails with
low or high site indices.

The large amount of noise associated with stand yield made it impossible to validate
volume predictions using realized gains in stand yield. This experimental error was
likely due to mortality from rust infection and other sources, along with the inherent
imprecision of large rectangular plots. This last issue could be improved by optimizing
trial design.
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