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Abstract:--Total height, annual height growth, root collar diameter, total number of
branches and total number of buds around the leader bud were recorded at age 6.

The experimental material was included 136 half-sib families originating from stone pine
natural populations from the Carpathian Mountains. Population samples were included in
a randomized complete block experiment with four replications and ten seedlings per
family per replication. Highly significant (p<0.001) family variation for all traits was
detected. Very high family heritabilities were estimated for total height (h f

2 =0 .968), root
collar diameter (

hf
2

 = 0.938) and total number of branches (
hf

2

 = 0.966). Genetic
correlations between total and annual height growth and root collar diameter were high or
very high, ranging between 0.804 and 0.969. These correlations indicated favorable
conditions for obtaining substantial genetic gain for a combination of these traits. By
selecting the best 30 to 45 families, genetic gains in total height growth and diameter
between 28.8 % and 23.4 % and between 18.8 % and 15.3 %, respectively, could be
achieved. Suggestions for a breeding strategy are made.

Keywords: Pinus cembra, half-sib progeny, growth traits, genetic variance, heritability,
genetic gain.

INTRODUCTION

Stone pine (Pinus cembra L.) is naturally distributed at high elevations of the Alps and
Carpathians, including the Tatra Mountains. (Georgescu & lonescu 1932; Beldie 1941;
Critchfield & Little 1966; Sauermoser 1994; Konak 1994). The species is important from
the following points of view: ecological (Holzer 1972; Frey 1994); silvicultural (Frey
1994; Holzer 1994; Blada 1996); industrial (Holzer, 1972; Contini & Lavarelo 1982);
genetic (Bingham 1972; Holzer 1975; Blada 1994); landscaping, tourism and other
recreation functions (Gordon 1994; Blada 1997 b)

Although stone pine is a very slow-growing species, it is of particular importance for
forestry in the Carpathian subalpine zone. Due to a lack of improved planting material, a
genetic improvement program including intra- and interspecific crosses was developed in
Romania (Blada 1990). Improvement of growth traits was the main objective of the
program.

This paper reports nursery-stage variation among 136 stone pine half-sib progenies.

1 Forest Research and Management Institute, Sos. Stefanesti 128, Office 11, Bucharest,
Romania.

85



MATERIALS AND METHODS

Initial material and nursery progeny test

Open pollinated seeds were collected from 136 stone pine trees growing in several
natural populations from the Carpathian and Alps Mountains. Only the availability of
cones per tree was taken into account in parent selection. To reduce the likelihood of
relatedness, the trees were separated by a minimum of 50 meters. In September 1991, two
seeds were sown per polyethylene pot (22 cm x 18 cm) filled with spruce humus. After
sowing, the seeded pots were placed in nursery beds where they were arranged in a
randomized complete block design The second seedling, if present, was removed in the
second year of growth. A 10-seedling row plot in each of four blocks represented each of
the 136 families. As stone pine is a very slow-growing species, the seedlings were grown
in the initial pots throughout the six-year nursery testing period.

Traits measured

Five traits (Table 1) were measured in the autumn of 1995 when the plants were six years
old. Plot means comprised the basic data for statistical analysis.

Traits Units Symbols

Total height growth cm H.6

Annual height growth cm h.6

Root collar diameter mm RCD.6

Total branches No. TNB.6

Total buds around the terminal bud No. TNBAL.6
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formula given by Anderson & Bancroft (1952). Genetic coefficients of variation (GCV)
were calculated with the formula:

RESULTS AND DISCUSSIONS

Genetic variation

Highly significant (p<0.001) differences among the 136 families were found in all traits
(Table 2, row 2). As a full table of family means cannot be presented here, Table 3 shows
family means of 10 best and 10 poorest families for each trait, indicating the magnitude
of family variation. Large variation among family means was found. For total height
growth and root collar diameter, the poorest groups had averages (X 2) of 13.4 cm and 7.7
mm, respectively; while the averages of the best groups (X 1 ) were 29.6 cm and 13.0 mm,
respectively, i. e. a difference (D 1 ) of 120.7 % and 69.3 %. At the same time, the
difference between the two groups of families was 152.6 % in total number of branches
and 120.3 % in total number of buds around the leader. Differences (D 2) between the top
group (X 1 ) and the test mean (X) were smaller but still significant (Table 3, last line). As
expected, differences among individual families were much greater. For example, at six
years of age, the worst family was 11.5 cm tall, while the best family measured 35.4 cm,
i.e. a difference of 204.3%. The genetic coefficients of variation for total height, annual
height growth, root collar diameter and total number of branches was 22.0%, 25.8%,
14.6% and 26.3%, respectively (Table 2, last line). Thus, it has been demonstrated that
stone pine half-sib families posses considerable genetic variation in the analysed traits,
suggesting that selection for improvement will be effective.

Variance components

Analyses of the trait data yielded estimates of variance components and their standard
errors presented in the lower part of Table 2. At age 6, the family additive genetic
variance was 88% for total height growth, 80 % for annual height growth, 79 % for root
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,
Table 2. ANOVA, variance components (o

2

 ) (percents in brackets), standard errors (SE) and genetic
coefficient of variation (GCV) for 136 open-pollinated stone pine families.

Table 3. Ranking of the 10 best and the 10 poorest stone pine families based on
nursery performance

Legend:
Dl = differences (%) between mean of the best (X 1 ) and the poorest (X2) group of the 10
families;
D2 = differences (%) between mean of the best group (Xi) and the test mean (X);
1) The best and the poorest families were not the same for every trait.
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collar diameter and 88 % for total number of branches. Therefore, a significant
contribution of genetic variance was noted not only for total height but for the other traits
as well.

The data suggest that additive genetic control is high in all traits. Rather than relying on a
constructed F-test, Snyder & Namkoong (1978) recommended that the magnitude of a
variance component be compared with its standard error. The variance component is
deemed to be important if it is estimated to have a standard error less than half the
magnitude of the component. In this experiment, the variance components for all traits
had standard errors about seven times lower than the estimated components themselves
(Table 2, line 5). This indicates that the genetic variances and heritabilities were reliable
and that a selective breeding program using additive variation will be effective in
improving any tested trait.

In summary, because the amount of variation was considerable an improvement program
with stone pine would be practical.

Genetic and phenotypic correlations

Highly significant (p<0.001) phenotypic correlations were found among all but two traits
(Table 4). Genetic correlations among growth characteristics, i.e. total and annual height
growth and root collar diameter were high or very high ranging between 0.804 and 0.969.
These correlations suggest that selection for one trait should lead to strong positive
indirect responses in the others. Both total height and diameter at root collar were
moderately and highly associated with the total number of branches, with genetic
correlations ranging from 0.571 to 0.713. Phenotypic correlations for the same traits were
highly significant (p<0.001) and positive. Selection for total height growth or growth in
root collar diameter should lead to an indirect increase in the total number of branches,
but this is a negative feature of trees because an increased number of branches means
lower wood quality. Therefore, reduction in the incidence of the total number of branches
in the next generation is likely to be achieved most readily by selection against this trait.
Consequently, the breeder should act towards breaking this undesirable positive
correlation and to select in favour of fast-growing trees with a small number of branches.
Similar genetic correlations have been reported for the full-sib family test (Blada 1999).

Heritability

Table 5 presents a summary of the heritability estimates and their 95% confidence
intervals for the open-pollinated families. All estimates of heritability in this study may
be somewhat upwardly biased because the experiment was restricted to a single nursery
where family-site interactions were not accounted for. Since the additive genetic variance
of all analysed traits was high, family narrow-sense heritabilities were also high, ranging
between 0.870 and 0.968. The heritability estimate for root collar diameter was 0.938 and
was about the same magnitude as the corresponding estimates for growth in height.
Similarly, high estimates were obtained for annual height growth, total number of
branches and total number of buds around the leader bud. High heritability has also been
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observed in the P. cembra full-sib progeny test carried out in the same nursery (Blada
1999). All estimates calculated here fell within the 95% confidence interval suggesting
their reliability.

Traits h.6 RDC.6 TNB.6 TNBAL.6

H.6

h.6

RCD.6

TNB.6

0.969
0.937***

0.881
0.830***

0.804
0.783***

0.571
0.559***

0.422
0.432***

0.713
0.674***

0.703
0.622***

0.660
0.638***

0.715
0.622***

0.354
0.333***

Table 4. Genetic correlations (upper line) and phenotypic correlations
(lower line) (Df = 134). *** p < 0.001

Traits hf2(CI)
AG (%) when selecting best 30,35 40

and 45 families out of 136 tested

30 35 40 45
H.6 0.968 (0.960 - 28.8 26.8 25.1 23.4

0.975)
h.6 0.941 (0.922 - 33.4 31.1 29.1 27.2

0.951)
RCD.6 0.938 (0.922 - 18.8 17.6 16.4 15.3

0.951)
TNB.6 0.966 (0.958 - 34.4 32.1 30.0 28.0

0.973)
TNBAL.6 0.870 (0.838 - 25.2 23.5 22.0 20.5

0.898)

Table 5. Family narrow-sense heritability estimates (h f)with 95 % confidence interval
(CI) and expected genetic gain (AG) at family level.

In conclusion, all analysed traits were under strong genetic control and thus, appeared
quite amenable to genetic selection.

Expected genetic gain

Table 5 presents estimates of gain, as a percentage of the nursery test mean, which might
be expected in growth and other traits after one generation of selection. If the best 30, 35,
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40 or 45 of the 136 families were selected and used in a planting program, genetic gains
in total height growth and diameter at root collar of 28.8%, 26.8%, 25.1% and 23.4% and
18.8%, 17.6%, 16.4% and 15.3%, respectively could be expected. Similar genetic
progress can be made in the other traits tested. This genetic gain could result in
substantial returns if large planting programs are developed. These results suggest that
growth improvement through family selection in slow-growing stone pine is possible.
Increased use of stone pine may lead to a situation where fast-growing trees become
commercially valuable.

Implications for breeding

As stated earlier, stone pine is a very slow-growing species. However, according to our
previous report (Blada 1999) and to the nursery test results presented in this study,
growth traits of stone pine are under strong genetic control. Consequently, selection on
the basis of progeny performance in the nursery test could provide substantial
improvement in diameter, height and total number of branches. Improving height and
diameter growth in stone pine is the main objective to be achieved. Therefore, action will
concentrate on the production of improved seed for operational planting, based on the
results acquired from this six-year nursery test of 136 half-sib progenies. This population
was divided into two equal parts. One part is already planted in field trails to be used for
estimation of genetic variation including juvenile-mature genetic correlations. The other
half of the population will be used for seed orchard development according to Zobel &
Talbert (1984) recommendations.

After field testing the breeding strategy will be improved according to the new estimated
genetic parameters. The objective is to incorporate the early testing procedures into an
operational improvement program.

Two types of production seed orchards are planned:

(i) A clonal seed orchard will be developed using as ortets the best 45 female trees; selection was
based on the height and diameter performances of their open-pollinated families (Figure 1). The
commercial Fl seedlings will be planted in regions to which they are adapted, e.g., on sites
relatively similar to those of the wild female parents. Taking into account our previous
observations (Blada 1990, unpublished data), this clonal seed orchard will have the first seed crop
about seven years after grafting.

(ii) A seedling seed orchard will be established by planting the fastest growing seedlings selected
from the best 45 families out of the 136 tested, i.e., the best offspring of the trees planted in the
clonal seed orchards. This is a first generation seed orchard. To maintain a large genetic base, 80
seedlings of each family will be planted at 3 x 3 m, requiring an area of 3.2 ha. The first
commercial F2 crop is expected to be available about 20 years after planting.

By planting improved material from the two types of seed orchards, significant genetic
gains should be obtained. In estimating these gains, one can use the procedures indicated
by Namkoong et al. (1966); and Shelbourne (1992).
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If the best 45 tested progenies are used directly in operational planting, a genetic gain in
total height of 23.4% could be expected (Table 5, row 1).

The provenance test (Blada 1997a) demonstrated that the improvement of growth in
height and diameter by provenance selection is also possible even if the species is a very
slow growing one.

It should be noted that our decision to utilize early selection to develop production seed
orchards after only six years of testing was encouraged by similar work reported by
others. For example, Lambeth et al. (1983) suggested that most selection in loblolly pine
(Pinus taeda L.) is currently carried out between ages five and ten years. Also, Lowe &
Van Buijtenen (1989); and Bridgwater & McKeand (1997) were in favour of early
selection.

CONCLUSIONS

Although stone pine is a very slow-growing species, high genetic variation among half-
sib families in growth traits and total number of branches was found.

The additive genetic variation detected in this breeding population can be incorporated
into an operational program or as a base for an advanced breeding population.

Genetic and phenotypic correlations suggest that correlated responses for growth traits
and total number of branches should be obtained through indirect selection.
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The high variability of the material and comparatively high heritability estimates showed
that consistent genetic gain in growth and total number of branches is possible.

Results of this experiment indicated that early height growth could be used as an early
testing trait for stone pine; consequently, early evaluation trials will permit making
crosses among the best parent trees after only a few years of testing.

By using results of this early testing, corroborated with previous results, an operational
improvement program for stone pine was developed.
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