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Abstract:--Single marker regression and single marker maximum likelihood estimation were used to
detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine
using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum
likelihood estimation was found to be more power than regression and could also estimate the distance
between markers and QTLs. Test statistic for the relationship between simple regression and maximum
likelihood estimation is introduced. A total of four major QTLs linked to random amplified polymorphic
DNA (RAPD) markers were detected explaining 19.7%, 10.7%, 12.8%, and 9.9% total variance of total
height. Multiple regression analysis indicated that these four QTLs explained about 43.2% of the total
variance of early height growth.
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INTRODUCTION

RAPD (random amplified polymorphic DNA) markers are fragments of DNA amplified from genomes
of organisms (Williams et al.1990, Welsch and McClelland 1990). The RAPD technique uses decamer
nucleotides as primers to amplify regions of template DNA. Nucleotide mismatches at the priming
sites such as those caused by insertions and deletions of one or more base pairs, or insertions,
deletions, and translocations in the amplified regions, may lead to polymorphisms. RAPDs are
dominant markers and are attractive because the procedure is simple, fast, and uses trace amounts of
template DNA. The association between RAPD markers and QTLs can be detected using various
methods. Markers that are tightly linked to QTLs may then be used for marker-assisted selection to
guide breeding efforts.

Approaches developed for detecting QTLs using molecular markers can be classified into marker
interval approaches and single marker approaches. For marker interval and single marker approaches,
statistical methods, such as regression, maximum likelihood estimation, and moment can be applied. The
single marker approach uses a single marker as the independent variable. This approach does not require
any linkage information of markers. The marker interval approach uses an interval between two linked
markers as the independent variable. This approach needs linkage information of markers for the
analysis and cannot use unlinked markers. Regression and maximum likelihood estimation have been
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the two statistical methods most frequently used in detecting QTLs. Single marker simple regression is
the most straightforward method for detecting the QTLs. This method compares the two or three
phenotypic means of the trait for each marker genotype. The amount of variance explained by the
marker is the basis for whether or not the marker is associated with a QTL (Tanksley et al. 1982). This
approach has been successfully applied in detecting QTLs (Keim et al. 1990, Diers et al. 1992, Stuber et
al. 1992, Young et al. 1993). In spite of its ease, single marker simple regression has three main
problems. First, this method is more likely to give a biased estimation of QTL effect, underestimating
the QTL effect. Second, the analysis cannot distinguish a tightly linked QTL of small-effect from a
loosely linked QTL of major-effect. Third, the analysis cannot provide the genetic distance between the
marker and the gene, which limits the value of the marker in practical application.

Single marker maximum likelihood estimation provides a way to overcome these two problems. The
first use of likelihood statistic for linkage analysis was for analysis of human genetic linkage by Fisher
(1935). Since then, the method of maximum likelihood has been commonly used in human genetic
linkage analysis (Ott 1985). Weller (1986) applied maximum likelihood estimation techniques to
analyze the association between a marker and a QTL in an F, family of two inbred lines. Lander et al.
(1987) introduced QTL interval mapping strategy and the computer software for interval mapping using
maximum likelihood estimation. Luo and Kearsey (1989) demonstrated the maximum likelihood
estimation method to detect linkage between DNA markers and QTLs using RFLP markers. In this
paper, the single marker maximum likelihood estimation approach will be compared with the single
marker simple regression approach in detecting association between RAPD markers and QTLs
controlling the early height growth in a ((longleaf pine x slash pine) x slash pine) BC, population.

MATERIALS AND METHODS

Plant population and field data

A ((longleaf pine x slash pine) x slash pine) BC, family was used for this study. The seeds from this
backcross were sown in June 1996. Data from a total of 83 seedlings were used for this study. The total
height in millimeters was measured for each of the 83 seedlings in January 1997.

RAPD markers and linkage

A total of 266 RAPD markers (150 were the F, parent-specific and heterozygous in the F, parent, and
116 were the recurrent slash pine parent-specific and heterozygous in the recurrent slash pine parent)
were identified. 113 of the 150 F, parent-specific RAPD markers were mapped into 17 different linkage
groups (pfl-pfl7), and 83 of the 116 recurrent slash pine parent-specific RAPD markers were mapped
into 19 different linkage groups (pel-pel9). The remaining 70 RAPD markers remained unlinked (Weng
et al. unpublished data). As no genotype information was available for the two grandparents, linkage
maps can only be constructed for each of the two parents. Although marker genotypes of BC, trees and
the linkage of mapped markers for each parent were available, there is no homologous information for
the two parents. Therefore, when we searched for QTLs, we could only search each parent separately.
Only those markers that were heterozygous in one of the parents and absent in the other parent were
useful for detecting QTLs in this research. If there was an allelic QTL that was heterozygous in both
parents, it would be detected as two non-allelic QTLs, one in each parent.
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STATISTICAL METHODS

Assumptions and Distribution

If we consider the ((longleaf pine x slash pine) x slash pine) BC, population consisting of the 83
seedlings, each seedling can have one of the two genotypes for each QTL. The height trait was assumed
to be controlled by several major-effect QTLs and many small-effect QTLs. Since there are so many
QTLs, the accumulation of QTL effects can be considered as random effect and the distribution of total
height can be approximated to be normal. The assumptions necessary for this research are:
1. total height trait is N(.1., 62),
2. gene action is additive,
3. there are no QTL-by- QTL interactions and no QTL-by-environment interactions, and
4. micro-environmental effects are random.

Taking into account a single QTL effect 26, the distribution will be N(I,t+6, 6 Q
2) or 1\1(1Q , Go 2) for the

group of trees containing the QTL, and N(,t-6, a:), or N(1,1,,, 6 q 2) for the group of trees not containing
the QTL.

Simple Regression

Suppose we have total height data of n individual trees with known marker genotypes,

_Y-{Y15 Y25  Yrj•

In the single-marker regression method, a RAPD marker genotype is used to represent a QTL genotype.
The linkage between the marker and the putative QTL is assumed to be complete. Each RAPD marker is
considered separately as the independent variable. The model will be:

)LT = + (1)

where
: total height
: true mean
: QTL effect

ej : random error effect.

The marker effect can be analyzed by regression. Markers tested to be significant at a given significance
level will considered to be a QTL. However, to consider a marker as a QTL is not accurate. If the QTL
and the marker are not exactly at the same locus, the QTL effect will be underestimated. The farther the
QTL is away from the marker, the larger will be the bias. Moreover, this model cannot tell how far the
QTL is away from the marker. A more sophisticated model of regression can take the distance between
the QTL and the marker into account.

For marker-present genotype, the model is:
Y k, =11 + 041-28) + eu (2)

For marker-absent genotype, the model is:
= + a(2 8-1) + (3)

where
8: distance between the QTL and the marker in terms of recombination fraction.
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RESULTS AND DISCUSSION
The simple regression

The distribution of total height was tested and found to be normal (P=0.8674). This result satisfied our
assumption that the total height is normally distributed. Subsequently, each marker was analyzed, one by
one, for an association with the total height. For each marker, the tree with an unknown genotype was
deleted from that test. Simple regression (model l) identified a total of 11 RAPD markers that were
tested to have significant effect on the total height (Type I error of 0.0032, a p-value equivalent to a
LOD of 2.0). Eight markers were located on linkage group pfl, one on group pf5, and two on group pf7.
The R-square value for these 11 markers ranged from 0.139 to 0.197. One additional marker, B08_0790
on linkage group pe5, had an R-square value equal to 0.099 but was slightly above our significance
threshold with a P value of 0.0041 (Table l).

Table l. The markers that were tested to be significant (P<0.0032) or to have a R-square equal to or
greater than 9.9% using simple regression.

Marker
Degree of
freedom

Sum of square
for regression

Sum of square
for error F R-square group P

110_1650 78 4441.5 22575.0 19.l 0.197 pfl 0.0001
200_0830 78 3697.6 23678.8 14.4 0.156 pfl 0.0003
299_1250 79 2535.5 22907.5 9.8 0.111 pfl 0.0024
324_1750 81 3981.2 23792.0 16.3 0.167 pfl 0.0001
384_1110 81 3690.6 23792.0 14.9 0.155 pfl 0.0002
384_1150 81 3360.4 23792.0 13.3 0.141 pfl 0.0005
G04_1250 76 3487.8 23193.4 13.5 0.150 pfl 0.0005
W02_1210 81 3297.4 23792.0 13.0 0.139 pfl 0.0005
Cl7_0670 80 2530.4 23693.0 9.6 0.107 pf5 0.0027
1810550 81 2739.4 23792.0 10.5 0.115 pf7 0.0017
E09_0810 77 3015.3 23643.0 11.3 0.128 p17 0.0012
B08_0790 79 2288.6 23004.5 8.7 0.099 pe5 0.0041
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into them. A total of 21 RAPD markers, belonging to eight different groups, were found to be
significantly associated with total height at a LOD threshold > 2.0. Of the 21 significant markers, nine
were located on linkage group pfl, five on pf5, two on pf7, one on pe5, two on pe8, one on pel8 , and
one was unlinked.

The 11 RAPD markers found to be significantly associated with total height (p<0.0032) using simple
regression were also significant with the maximum likelihood estimation approach (LOD>2.0).
However, at the equivalent significance level, the number of significant RAPD markers using maximum
likelihood estimation was about twice that using simple regression. This demonstrates the increased
power obtained by employing a maximum likelihood-based approach. In addition, the maximum
likelihood approach provides an estimate of the distance between the markers and their putatively linked
QTLs.

A commonly used QTL genetic linkage program package, MapMaker/QTL, which employs a maximum
likelihood-based interval approach, detected a total of 11 markers within the 36 linkage groups, whereas
the single marker maximum likelihood estimation detected 20 (Table 3). Two possible reasons may have
contributed to these results. First, the LOD may have been balanced by the other marker comprising the
linked interval, possibly suggesting that MapMaker/QTL may be more conservative. Secondly, single
marker maximum likelihood estimation may have absorbed some random variance, suggesting single
marker maximum likelihood estimation may be more robust than a interval based approach. One last
point, an unlinked marker (225_1300) was found to be significant using single marker maximum
likelihood estimation but could not be detected with MapMaker/QTL, which requires information about
linked markers only.

Table 3. The single marker maximum likelihood estimation test using surface search. The LOD values
were compared with LOD obtained using MapMaker/TQL.
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* U = unlinked to any groups

Multiple regression 

Markers tested to be significant using maximum likelihood estimation belonged to six linkage groups. In
order to avoid multicolinearity, one marker was chosen for each of these six linkage groups to do
multiple regression. The multiple regression results indicated that the combination of four markers
(110_1650, Cl7 0670, E09_0810, and B08_0790) from four linkage groups (pfl , pf5, pf7, and pe5)
explained 43.2% of the total variance of the total height growth.

Table 4. The F tests for the four major effect linkage groups using multiple regression
Source DF Type III SS Mean Square F Value Pr > F
110_1650 1 2660.44 2660.44 14.81 0.0003
Cl7_0670 1 2401.78 2401.78 13.37 0.0005
E09_0810 1 1164.03 1164.03 6.48 0.0132
B08_0790 1 1594.18 1594.18 8.88 0.0040

CONCLUSION

The single-marker maximum likelihood estimation approach was found to be more powerful than the
simple regression approach in detecting markers linked to putative QTLs. It was also suggested that the
single marker maximum likelihood estimation approach may be a more robust approach for detecting
QTLs than interval based approach such as that used by MapMaker/QTL.
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