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Abstract. -- Many contemporary breeders are building founder breeding
populations, and there is a need to learn about the potential long-term
consequences of their breeding activities. In this paper impacts of recurrent
selection, mating design, and effective population size on dynamics of breeding
populations are discussed. A theoretical model of a single-loci population is used
to highlight the relevant information on long-term tree breeding.
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INTRODUCTION

Long before Darwin (1809-1882) and Mendel (1822-1884) provided empirical evidence
of the process of evolution and mechanism for inheritance, humans had domesticated animals
and crops by practicing artificial selection. These domestication processes demonstrated the
human ability to select for modified forms of plants and animals. Likewise, artificial selection
remains an important feature of forest tree breeding as contemporary tree breeders domesticate
and breed trees. To many tree breeders, however, selection represents only a subset of activities
associated with the broader objective of managing genetic resources. Tree breeders are interested
not only in maximizing immediate genetic gain, but also in learning the potential long-term
genetic consequences of various breeding activities. This reflects increasing awareness that
whatever tree breeders do today will influence future tree breeding for a long time: what is good
for today may not necessarily be good for tomorrow. Decisions made or not made now will limit
future options.

Three main questions contemporary tree breeders may ask about long-term breeding are:
(1) How large should the overall breeding population size be? (2) How should the breeding
population be structured? and (3)What are the long-term consequences of using current breeding
techniques? To address these questions, we need to consider dynamics of breeding populations
over many generations. Although most forest tree species cannot be used for this purpose, it is
possible to learn about population dynamics by means of theory and empirical study of fast
generation turn-over plants, including some tree species. These alternative means do not allow us
to predict specific conditions of the breeding population at some time in the future, but they do
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The main objective of this paper is to address some aspects of the above three long-term
tree breeding questions. I will: (1) review some basic concepts of artificial selection and
effective population size; and (2) discuss recurrent selection, mating design, and population size
using a single-loci model.

SELECTION, MATING DESIGN, AND EFFECTIVE POPULATION SIZE

Single cycle of selection: 

where s, i, and a represent selection coefficient, selection intensity, and the standardized
distance between two homozygotes, respectively. This relationship assumes that the
environmental effect is normally distributed. For example, Fisher's (1918) infinitesimal model
deals with the case where the number of loci influencing the character subjected to selection is
effectively infinite, and the environmental effect is assumed to be normally distributed. Even if
this normality assumption does not hold, i in [1] could be replaced by the ratio between the
ordinate at the truncation point to the proportion selected, as long as truncation selection is made
and the gene effects on the character are additive between loci (Kimura and Crow 1978).
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Multiple cycles of selection and Selection limit

When repeated artificial selection is applied to a population, the population may cease to
respond to the selection at some point. The population could reach this selection limit for many
different reasons such as (Eisen 1980): (1) fixation of all loci affecting the trait; (2)
overdominance for the trait; (3) artificial selection opposed by natural selection; (4) undesirable
recessive genes at low frequency; (5) negative genetic correlation between component
characters; (6) genotype by environment interaction; and (7) tight linkages. For most of these
cases, populations will have genetic variances at the limit and will respond to reverse selection.
When all the loci affecting the trait are fixed with one allele, then there will be no genetic
variance, and reverse selection will not yield a response.

Many experimental results on recurrent selection are available. Wright (1977) made an
extensive review of this subject. Some notable studies of selection limit are: Jones et. al. (1968)
for fruit fly, Roberts (1966a,b, 1974) and Eisen (1972, 1974) for mouse, and Enfield (1974,
1977) for flour beetle. These experiments were designed to test the influence of variance
effective population size (Nev) and selection intensity (i) (or population structure). Some
important conclusions from these studies are: (1) The total response to selection increases when
the population size increases. (2) For a fixed population size, the total response increases when
the selection intensity increases. (3) The estimates of the time taken to reach the selection limit
in general do not agree with the theoretical prediction by Robertson (1960). There are other
landmark experiments. Dudley (1977) has shown that the percentage of both oil and protein in
maize showed no sign of approaching limits after 76 generations of upward selection. Wright
(1977) called the findings of Payne (1918) striking, where a population drawn from a single wild
Drosophila female responded to selection (scutellar bristle) for more than 35 generations.

Robertson (1960) showed that the "half-life" (number of generations necessary to reach
the allele frequency half way to the selection limit) would vary between 1.4Nev and 2Nev.
Empirical results showed that this prediction did not work, but we may use these expressions to
discuss forest tree breeding. Consider a species with a generation turn over period of 10 years. If
50 individuals are selected every generation, it would take at least 70 generations or 700 years to
reach the half-life. It would take a long time before a selection limit is reached. Should tree
breeders be concerned about selection limit? It is unrealistic to begin a breeding program with
the idea that some day the breeding population will reach its selection limit. Breeders may
consider selection limit as a conceptual restriction. It is useful to know that a chosen strategy
does not lower the selection limit. Given this restriction breeders may choose the strategy which
would allow the maximum short-term genetic gain. The parameters u(q) and t(q) themselves
could be used in developing breeding strategies. Understanding these parameters would help in
determining necessary breeding population sizes and in designing the structure of breeding
populations. It would also offer alternate views on short-term breeding techniques. It is well
known that the selection limit is usually smaller than that projected by the gain at the beginning
of the breeding program (Bohren 1975). Learning the causes of such discrepancies would greatly
help breeders to appreciate the factors that influence population dynamics.
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The basic theory of limits to artificial selection was first set forth by Robertson (1960).
To develop the theory Robertson used Kimura's (1957) expression for the ultimate probability of
allele fixation u(q). This probability is a function of the initial allele frequency (q), variance
effective population size (Nev), and selection coefficient (s) such that,

- -
gene iiacton. The single-loci model also assumes independence among loci (no linkage and no
epistasis), discrete generation, and constant Nev and s. Given all these assumptions, the dynamics
of the population is completely explained by the three parameters, q, Nev, and s. In artificial
breeding where truncation selection is used, we may replace s with i and a (Equation [1]).

Some additional conclusions of Robertson (1960) are: (1) For small populations, the
advance due to selection is greatest when 50% of the population is selected. This was also
predicted by Dempster (1955), and Cockerham and Burrows (1980). (2) For small additive allele
effect (a in Equation [1]), if Nevi is small, then the total response is approximately 2Nev times
the response in the first generation. Subsequently, many theories dealing with selection limit
have been developed: Conflict between natural and artificial selection (James 1962, Sved 1977,
Nicholas and Robertson 1980); Exact probability (Hill 1969a, Carr and Nassar 1970a,b); Finite
number of gametes (Schuster and Sigmund 1989); Linkage (Hill and Robertson 1966, Gill
1965a,b, Latter 1965, 1966, Robertson 1970); Mating design (Kang and Namkoong 1979, 1980,
Kang 1983); Mutation (Hill and Keightley 1988, Hill and Rasbash 1986, Keightley and Hill
1988); Overlapping generations (Emigh and Pollak 1979); Rate of response (Hill 1969b, Kimura
and Ohta 1969); Self-fertilizing population and inbreeding (Bailey 1977, Hill and Robertson
1968, Robertson 1961); Structured population (Baker and Curnow 1969, Madalena and Hill
1972, Hill 1970); and Within-family selection (Dempfle 1975, Young and Skavaril 1976).

The connection between u(q) defined in the theoretical models and observed total
advance from selection experiments may be interpreted as follows. The level of the limit, (i.e.,
the height of the plateau) will be influenced by the number of favorable alleles fixed. Therefore,
the greater u(q) for the loci involved, the greater the height of the plateau is likely to be. At
fixation, the population will lack genetic variance with respect to the character selected.
However, empirical results have shown that when reverse selection was made at selection limit,
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the population almost always responded, implying that the population had genetic variability at
the limit. It was also mentioned before that empirical results did not agree with Robertson's
conclusion regarding the half-life. Therefore, selection theories appear to be of limited value as
means of predicting total advance from selection. These theories, on the other hand, have been
extremely useful in sorting out factors that influence the selection limit. Experimental results,
indeed, indicate that Nev and s are two critical factors that influence the limit. Because the factors
that influence the population dynamics are completely represented by three parameters, q, Nev,
and s, it must be possible to explain any variation in the selection regime by using these
parameters. For example, the influence of the mating designs on the selection limit could be
explained based on how they influenced the variance effective population size (Kang and
Namkoong 1979, 1980, Kang 1983). This will be discussed in a later section.

Mating design, variance effective population size, and allele fixation

Mating design represents "rules" for arranging different control crossings. There are three
different standard types of mating designs: nested, factorial, and diallel. Most of these designs
allow the estimation of both additive and dominance genetic variance. There are large
differences among designs with respect to the number of control matings necessary. To take the
most extreme example, full-diallel requires N 2 crossings while pair mating requires N/2
crossings to complete the design, where N represents the census number of parents. Therefore,
the full diallel mating requires 2N times more crossings than pair mating, and the ratio will
increase as the number of selected parents increases. Using complex designs is often biologically
impossible as well as costly and time consuming. Traditional mating designs assume that mating
is made randomly after truncation selection. Instead of random mating, assortative mating may
be used. These assortative matings could be balanced or unbalanced, where balanced mating
means that all the parents have equal probability of passing the same number of alleles to the
progeny gene pool. Alternatively, it is possible to assign weights to the ordered breeding values
(Kimura and Crow 1978, Crow and Kimura 1979, Lindgren and Matheson 1986, Lindgren et al.
1989, Kang and Namkoong 1988, Kang 1989). These mating systems are necessarily
unbalanced.

Mating designs were originally developed as means of estimating genetic parameters
such as additive- and/or dominance variance. Mating design has also been used in developing
selection strategies in short-term breeding. The designs offer different hierarchical structures,
such as half-, full-sib family, and individuals within family, in the progeny population. This
hierarchical structure provides the basis for constructing selection indices. In evaluating mating
designs with respect to estimation, the sampling variance of the genetic variances are used
(Nasoetion et al. 1967, Namkoong and Roberds 1974, Pepper 1983). In general, for a given
number of parents, the mating design that includes the larger number of crossings will produce
the smaller sampling variance. For example, Klein et al. (1973) indicated that it would take at
least 400 families to estimate heritability with a standard error less than 0.1.

The predicted genetic gain under different selections has received great attention. For
example, it is well known that family selection is more desirable than within-family selection
when the heritability (or intraclass correlation) is low (Falconer 1981). This kind of idea has
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been generalized into the form of index of family and within-family values. Because family
structures can be created by the mating systems, it is possible to evaluate selection-mating design
combinations (Cockerham and Matzinger 1966, Namkoong et al. 1966, van Buijtenen 1972,
Lindgren 1977, Pepper and Namkoong 1978, Cotterill and Jackson 1989). Mating designs seem
to have relatively little impact on the index-mating design combinations (Cotterill and Jackson
1989). For both mass selection and family selection, mating designs have relatively little impact
on Aq as long the mating designs are balanced (Kang and Namkoong 1979, Kang 1983).

There are some theoretical as well as empirical findings that indirectly indicate that
balanced mating designs may not differ with respect to fixation probabilities: (1) Hill and
Robertson (1968) examined the effects of inbreeding in monoecious and dioecious populations
when heterozygote advantage existed. They found little difference between the two populations
with respect to equilibrium allele frequencies. (2) Lande (1977) found that mating system had no
influence on the amount of genetic variance maintained in the model population that allowed
mutation, linkage, and natural selection on a polygenic character with additive genes. (3) My
unpublished results from the single-locus model showed that selfing did not change u(q). (4)
MacNeil et al. (1984) studied effects of mating systems in Japanese quail. In this experiment, an
inbreeding and a random mating population were compared. They found that once the
inbreeding population overcame the initial depression its performance level increased rapidly.
(5) Cockerham and Burrows (1980) indicated that to maximize the selection limit in dioecious
populations the optimal procedure would be to equal numbers recorded and selected of each sex.

The theoretical explanation for why u(q) do not differ between balanced mating designs,
but differ among unbalanced mating designs can be found by observing the impacts of different
mating designs on variance effective population size (Nev). The variance effective population
size is defined as (Crow and Denniston 1988),

Under balanced mating, Nev = N t-1 regardless of the number of crossings involved,

because sk2
, = µk. This holds for assortative mating also as long as they are balanced. With

unbalanced mating, however, Nev < Nt-1 and sk
2
, >µk. In a recurrent selection, where the census

population size (N) is kept constant, µk = 2, for all mating designs, and the difference between
balanced and unbalanced mating design originates from different sk

2. Because Nev of unbalanced
mating design is always smaller than that of balanced mating design, it generates lower
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probability of allele fixation (u(q)) for given q, s (or i and a), and N t- 1 . For example, assume that
the number of parents selected (Nt- 1 ) is 8, then Nev of full-diallel, pair mating, and selfing is 8,
but that of factorial mating with 1 tester is 4.06. When the census number (Nt or N) is 16, Nev of
a factorial mating design with 1 tester is 4.01. In general, with 1 tester factorial,

assuming that E = 0. When N=8, q = 0.25, i = 1.755 (10% selection), a = 0.2, and additive gene
action, u(q) for all the balanced mating is 0.76. For factorial mating with 1 tester u(q) is 0.54,
even if the census number (N) is greater than 8. The value of u(q) is found by evaluating
Equation [2] after replacing proper values listed above.

Equation [2] is not an exact solution, but has been proven to be a good approximation
(Hill 1969a, Carr and Nassar 1970a,b). Balanced mating designs of u(q) calculated by using a
numerical analysis (Kang and Namkoong 1979, 1980) also resulted in the same values as those
obtained from Equation [2]. However, the numerical analysis of factorial mating design resulted
in lower u(q) than the solutions from [2] (Figure 1). It is possible that there other than Nev might
influence u(q). For example, in the calculation of Nev, C (deviation from Hardy-Weinberg
proportion) is assumed to be zero, which is rarely true. In any case, the discrepancy

Figure 1. Ultimate probability of allele fixation (u(q)) under different initial allele frequency
and population size. N# represents the census number. Initial conditions used are: a=0.2,
i=1.755 (10% selection), additive gene action. The u(q) for balanced designs (N16, N8) and
N8 Factorial (1 tester, Nev=4) were obtained by using Equation [2].
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appears to be fairly consistent over different initial allele frequencies. Figure 1 also shows that
for a moderate initial allele frequency, say q > 0.3, and Nev  = 16 the probability of allele fixation,
u(q), is close to 1 with balanced mating. Therefore, if the allele fixation under selection is the
only concern in long-term tree breeding, then the breeding population size does not need to be
very large, unless the breeder wishes to save favorable alleles of very small initial frequency.

COMPARISON OF MATING DESIGNS UNDER A SINGLE-LOCI MODEL:
A COMPUTER SIMULATION

In this section, I will discuss findings from a simple computer simulation experiment that
compared response to selection to different mating designs. The analytic expression for u(q) in
[2], or numerical analysis used in Kang and Namkoong (1979, 1980) provides information on
populations at the selection limit, but does not show intermediate progress of the population.
Computer simulation was made to observe the pattern of approach to selection limit when
different mating designs were used.

In this experiment, the trait of interest of a population was assumed to be composed of a
single locus (or many independent loci). As before, the initial conditions used were q = 0.25, i =
1.755 (10% selection), a = 0.2, and additive gene action. The genotype frequency of the initial
population was set to be in Hardy-Weinberg equilibrium. From this founder population N
parents were randomly sampled, and crossed according to a mating design. From the progeny
population produced, N individuals were selected based on their phenotypic score. These
selected individuals were used as parents for the next generation. Before control crossing, these
individuals were sorted according to their phenotypic values. Therefore, pair mating in this
experiment represents an assortative mating. Selfing, of course, is the most extreme form of
assortative mating, regardless of the order of selected individuals. The recurrent selection was
continued for 50 generations. This computer trial of 50 generations of selection was repeated
1,000 times. At each generation, the number of subpopulations with allele fixation and allele loss
was determined, and average allele frequency was calculated.

As expected, all balanced mating designs approached the same selection limit near 0.75.
(Figure 2a). The factorial mating design with 1 tester (Nees = 4) approached a lower selection
limit near 0.65. This level is actually higher than u(q) obtained from Equation [2] (0.54) and
numerical analysis (0.49). Although all the balanced matings approached the same selection
limit, the progress from selection was fastest with selfing, which was distantly followed by pair
mating. For all practical purposes, pair mating, half-diallel, and partial-diallel may be considered
the same in this experiment. The initial rates of progress from selection by both half-diallel and
partial diallel were similar and slow. When compared to balanced mating designs other than
selfing, the factorial mating had relatively rapid initial progress from selection, but produced
lower plateau.

Numbers of populations with allele fixation or loss at different generations also show
consistent results (Figure 2b). To simplify the picture, half-diallel and partial-diallel were not
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Figure 2. Results from single-loci selection simulation. a. Changes in the average allele
frequency of 1,000 trials. b. Number of populations with allele fixation or loss.

137



included in Figure 2b. Selfing tends to have a larger number of subpopulations with allele
fixation at earlier generations than pair mating. Eventually the number of subpopulations with
allele fixation merged. Factorial mating also had a fairly large number of subpopulations with
fixation during earlier generations, but a lower overall number of subpopulations with fixation.

Selfing also had a larger number of subpopulations with allele loss in early generations,
when compared to pair mating (Figure 2b). Both have plateaus at the same level. Factorial had
larger number of subpopulations with allele loss in early generations than balanced mating
designs, and a higher plateau. This is primarily because of the reduced variance effective
population size (Nei = 4). The loss level, however, was lower than that expected based on loss
probability (1 - u(q)). The number of subpopulations with allele loss is greater than that with
allele fixation, which is a result of using a low initial allele frequency in this simulation (q =
0.25).

The average allele frequency of populations increases faster and reaches a higher plateau
as the variance effective population increases (Figure 3). The number of subpopulations with
allele fixation increases faster with smaller effective population size. This brings out an
intriguing question in tree breeding. Which of the two parameters, average allele frequency and
the number of subpopulations with allele fixation, is more important in developing a long-term
breeding strategy? If we chose average allele frequency, then we would opt for larger
subpopulations. On the other hand, if we maintained a large set of smaller subpopulations, we
would be able to obtain populations with fast allele fixation possibility. For a given individual

Figure 3. Average allele frequency and number of subpopulations with allele fixation under
selfing.
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subpopulation, the probability of allele fixation will be lower; but when all the subpopulations
are combined, the overall probability of allele fixation can be maintained by hybridizing
subpopulations when they reach their selection limits (Baker and Curnow 1969, Madalena and
Hill 1972). As discussed before, selection limit may be viewed as a conceptual restriction, and
breeders may choose the strategy that will allow the quickest response to selection. It is clear
from Figure 3, that if we have a population with Nev = 1, then the early rate of increase in the
number of subpopulations with fixation will be greatest. However, Nev = 1 implies selfing in
monoecious species, which is often avoided by tree breeders.

Inbreeding would, no doubt, expose deleterious alleles in the breeding populations, and
would be a source of concern for tree breeders. It is, however, desirable to purge deleterious
alleles during early generations of tree breeding (Kang 1982, Kang and Nienstaedt 1987). Fisher
(1965) emphatically argued for the importance of inbreeding and purging of deleterious alleles
from breeding populations: "Practical breeders of farm animals are naturally deterred from a
form of mating which is liable to produce animals undersized, unproductive, and prone to
disease. Their reluctance is doubtless enhanced by a subconscious abhorrence of incest in their
own species. Nevertheless, when an inbred line is formed from elite stock, it can contain no
genes, however inferior it may appear, which were not present in its admired progenitors, nor
can it hand any others on to its descendants. At the expense of some loss of appearance, and
immediate utility, and with the real inconvenience of lower fertility, which may make the
maintenance of such stocks difficult, the germ plasm may have been purified of many
unnecessary defects, and the great boon of reliability of breeding performance gained."

This simulation shows that values of different breeding techniques vary depending on the
perspectives used by tree breeders. There is a clear need to evaluate different breeding
techniques with respect to long-term breeding, and then search for ways to combine short- and
long-term breeding activities.
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