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Abstract.--The various paper and paperboard products are made for different
purposes and therefore have different product specifications and standards. Printing
applications require smooth, low porosity paper with sufficient strength to carry the
mineral fillers and coatings needed to obtain opacity and gloss. Paperboard products
need stiffness and compressive strength to perform well under stacking loads. As
the paper requirements change, so do the preferred characteristics of the pulp fibers
and the ability of the papermaker to adjust for unfavorable fiber form. Pulping
processes also differ in ability to handle diverse tree species. In particular, the
mechanical pulping processes are highly species dependent, favoring low-density
softwoods with fine fibers and thin cell walls.

Performance requirements for typical paperboard and coated paper products
are reviewed and the softwood fiber characteristics that maximize performance are
identified. In addition, the influence of fiber morphology on the production and
performance of mechanical pulps is considered.
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INTRODUCTION

Of the many parameters useful as a measure of product performance, board bending stiffness
is probably of greatest interest to the construction industry, and paper breaking length or tensile
strength is of most interest to the papermaker. In Figure 1, average bending modulus for boards cut
from various softwoods ( Wood Handbook,1974) is graphed against breaking length (MacLeod, 1980)
for kraft pulps derived from the same species. Species that routinely give fibers capable of forming
strong papers generally have poor stiffness as solid lumber products. Of the four softwoods
selected, the spruces, often considered ideal papermaking fibers, have the weakest bending
modulus as solid lumber products.

Figure 1. Paper breaking length graphed against board bending modulus for typical pulpwoods.
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In an effort to highlight the needs and desires of the paper industry for wood fiber form, this
paper will review the product requirements of various paper and paperboard grades and attempt
to identify the key fiber characteristics that contribute to the manufacture of a superior product. To
simplify the problem, the hardwood pulp contribution to paper and paperboard performance will
not be considered in this paper, and the discussion will be limited to softwoods. The performance
of the following representatives of four genera: spruce (white, black and Norway), western
hemlock, Douglas-fir, and southern pine (loblolly and shortleaf) will be evaluated in various paper
products. Table 1 summarizes average wood density and typical fiber characteristics for
representatives of these four softwood genera.

Table 1. Fiber characteristics of common U.S. pulpwoods (Isenberg, 1980; Horn, 1972; Koch, 1972).

Specific Fiber Latewood
Gravity Length Diameter Wall Content

Species g/cc mm p.m µm %

Loblolly Pine 0.47 3.5-4.5 35-45 4-11 20-45
Douglas-fir 0.43 3.5-4.5 35-45 3-8 25
W. Hemlock 0.38 2.5-4.2 30-40 2-5 10-30
W. Spruce 0.37 2.5-4.2 25-35 2-3 3

MECHANICAL PULPING

In mechanical pulping, fiber characteristics are a dominant variable and exercise considerable
control over the paper quality. Typical quality data for mechanical pulps from the four genera are
presented in Table 2. The white wood and thin cell walls of spruce give the strongest and brightest
mechanical pulp of the four, making it the preferred genus for high-yield pulping. Douglas-fir,
giving low strength and low brightness, is rarely used in mechanical pulping.

Table 2. Typical pulp properties and energy consumptions of different species compared with spruce
groundwood (Kurdin, 1980; Hatton and Cook, 1990).

Spruce
Genus

Loblolly Douglas-firW. Hemlock

Energy kWh/BDT 1900 1960 2500 2750
Freeness ml 120 80 100 100
Breaking Length km 4.8 3.7 3.3 3.4
Tear Index mNm2/g 9.7 8.3 7.3 6.3
Brightness 59 56 58 53

Traditionally, wood density has been the parameter most associated with differences in high-
yield pulp quality between species. However, wood density does not control mechanical pulp
quality but rather, some aspect of fiber structure that correlates well with wood density.

The Shallhorn, Karnis equation for the tensile strength of a bond limited paper domain such
as newsprint, is given below (Shallhorn and Karnis, 1979).

where N is the number of fibers in the break, r is the fiber wall radius, F is the bond strength per
unit fiber surface, l is the average fiber length.
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All paper grades are made to a basis weight specification. Adjusting for basis weight by
dividing by g/m2 gives tensile index (or breaking length) and introduces the term N/g. Whereas
basis weight is dictated by paper grade, N/g is controlled by fiber morphology. Average fiber

Fiber length (1) cancels, cell wall density (Besley, 1969; Smith, 1965; Wangaard, 1969) (p) and
bond strength per unit fiber surface area (F) are relatively  constant for a given mechanical pulping
process and within the softwoods of interest. The term m² introduced with basis weight is constant
within a nailer grade or a standardized test Procedure. This leaves the term Tu. which is 1 /2 average

Using data from various literature sources, this ratio is graphed against TMP breaking length in
Figure 2. The straight line obtained indicates that the ratio is a key factor in strength development
of mechanical pulps. This result still needs to be evaluated using a coherent set of data.

Figure 2. TMP breaking length at 2000 kWh/BDT specific energy graphed against the ratio of average fiber
circumference divided by average fiber wall cross-sectional area.

COATED PRINTING PAPERS

The key performance requirements of coated printing papers are high smoothness, low
porosity and high paper surface strength.

Smoothness and Porosity 

To obtain high gloss and even print density on the coated paper, the final surface must be very
smooth (Bristow and Ekman, 1981). The clay coating layer on a sheet of paper is on the order of 5µm
thick (Kartovaara, 1989), comparable to the double-wall thickness of the average spruce fiber and
half the double-wall thickness of a loblolly pine fiber. Although the coating process fills in the
surface roughness of the sheet with the slurry coating clay, shrinkage on drying reproduces the
original surface topography in reduced scale. Additional smoothness is gained by calendering the
coated paper. The calendering process improves smoothness and unprinted sheet gloss but can also
create other problems. Calendering can cause ink to absorb at different rates (Kartovaara, 1989) and
can reduce sheet strength and opacity.
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To obtain both high smoothness and low porosity in the base paper, papermakers prefer fibers
with thin cell walls that collapse on drying to form ribbon-like fibers that conform to the surface of
the other fibers in the sheet. This increases paper density, decreases porosity and assures that the
maximum surface defect is on the order of 1 double-wall thickness, about 5 µm  for spruce. Fibers
with thick cell walls resist collapse. A cylindrical fiber is unable to conform to the other fibers in the
paper, opening up the paper structure and increasing porosity. If a southern pine latewood fiber on
the paper surface fails to collapse on pressing and drying, it can protrude above the average surface
of the paper by one whole fiber diameter, 25 to 50 µm  (Koch, 1972) and 5 to 10 times the average
coating thickness.

Surface Strength

The heatset web offset printing process is a torture test for coated papers. Starting with the low
porosity base paper, the coating reduces the porosity even further. In the offset printing process,
water is used to protect the non-image part of the printing blanket so the paper picks up moisture
in the press. After printing, the paper is dried rapidly in an oven to set the inks. The water in the
paper turns to steam, which is restricted from expanding and escaping by the low porosity of the
paper and the coating. The result is an internal force working to blow the sheet apart.

In lightweight coated papers containing mechanical pulps, the steam contributes to fiber rise,
reforming the lumens in previously collapsed fibers. In lightweight coated papers with 100%
chemical pulp in the base paper, the weak link is generally the interface between the paper and the
coating that leads to coating blisters, much like paint blisters. Improved surface strength reduces
the severity of both fiber rise and heatset printing blisters (Perry, 1972).

Good paper surface strength is favored by a high bonded surface between fibers. Bonded
surface can be increased by mechanically tearing fibrils from the surface of the fibers. Fibers with
a large surface area to mass also help. In studies of fibers readily pulled from the surface of papers
containing mechanical pulp, heavy walled latewood fibers invariably dominate (Mohlin, 1989). As
with smoothness and porosity, species with thin fiber walls, such as the spruces and the true firs,
are preferred.

Manufacturers of lightweight coated printing papers prefer the lower density softwoods,
primarily the spruces and true firs. Over 70% of the coated papers manufactured in the United States
are produced in the northeast and north-central states where white and black spruce and balsam
fir are available (Table 3).

Table 3. Pulp and paper production by region (Statistics, 1990).

South
% of U. S. PRODUCTION

N.E./N.C. West

Total Paper 53% 31% 14%
Newsprint 58 11 31
Coated 22 71 4
Uncoated Free 40 45 12
Bleached Board 89 0 11
Kraft Board 82 0 17
Market Pulp 67 16 16
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BLEACHED PAPERBOARD

Bleached paperboard is used in folded cartons and liquid packaging applications. Paperboard
used in consumer packaging is a store display item and, for these applications, the board is coated
to improve the printing characteristics. The requirements for printed folding carton applications are
similar to those for lightweight coated papers, but the heavier basis weights and thicker clay
coatings provide added flexibility for handling difficult fibers.

Stiffness

The other major requirement of packaging board is stiffness (Grangård, 1970). High board
stiffness improves stacking strength and product protection. For liquid packaging applications it
reduces carton bulge (Bridger and Munday, 1969) and makes the carton easier to hold.

Bending stiffness in a solid bleached paperboard can be estimated from Young's modulus of
elasticity (E), and paperboard thickness or caliper (c) (Schrier and Verseput, 1967).

S = kEc3

Typical results for handsheet bulk and elastic modulus for the four sample genera are given in Table
4. Estimated handsheet stiffness is calculated from these data using this equation for stiffness.

Table 4. Fiber properties for structural papers.

Estimated
Elastic STFIb Stiffness

Bulk Modulus Compression arbitrary
Genus cm3/g kma Strength Nm/g units

Spruce 1.42 830-920 40-43 210-217
W. hem 1.34 900c 37-41 180-350
D. Fir 1.67 659-866 31-33 230-371
S. Pine 1.66 888 36 326-348

a DeGrace and Page, 1976. bSeth et al., 1986 cHorn, 1972

Modulus favors fiber forms giving dense papers, such as the spruces. Caliper invariably favors
the coarse fiber species, loblolly pine and Douglas-fir. Since stiffness is linearly dependent on
modulus but increases according to the cube of caliper, handsheet stiffness is best for loblolly pine
and Douglas-fir. Referring again to Table 3, 90% of the bleached board manufactured in the U.S. is
produced in the south using the available southern pines and hardwoods.

The advantage of the coarse southern pine fiber has helped the U.S. paperboard industry for
many years, but recent advances with paper machines using several forming sections endangers the
southern pine dominance of the paperboard market. Multi-ply paperboard using high modulus
fiber furnishes on the outer plies, and a bulking furnish for the inner ply, can improve bending
stiffness by 50% over that available with a single furnish paperboard (Fineman, 1985; Engman,
1989). Since spruce and fir refine easily to give high modulus papers for the outer plies, and
mechanical pulps and waste paper are good choices for bulking inner plies, the success of the three-
ply paper machine offers Canada and the Nordic countries the means to challenge the southern
kraft paperboard industry (O'Brien, 1991).
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CORRUGATED BOARD

Corrugated board is not really a paper or paperboard but rather an engineered product
constructed from paperboard. It is influenced by both the manufacturing process and the nature
of the original paperboard products, the linerboard forming the outside of the corrugated sheet,
and the medium glued in place between the two liners. Through the years there have been extensive
efforts to understand the role of the liners and medium on the performance of the combined board
product. The two critical performance tests for linerboard are considered to be compressive
modulus and compressive strength (Koning, 1975).

Compressive modulus is generally identical to the modulus of elasticity measured in tensile
(Fellers et al., 1980; Wink, et al., 1982) reported in Table 4. Technically, a high elastic modulus
requires fibers of low fibril angle (Page et al., 1977) and papers of high density (Page et al., 1979).
Modulus is also influenced by the drying restraint applied when producing the paper or handsheet
(Setterholm and Chilson, 1965) and can be improved by any means capable of increasing paperboard
density, such as improved wet pressing, increased beating (Page et al., 1979) and lower pulp yield
(Koning and Haskell, 1979).

Compressive strength is largely a matter of paperboard density (Fellers et al., 1980), but is also
influenced by pulp yield (Koning and Haskell, 1979), double-wall thickness and fibril angle (Seth
et al., 1986). Under standard pulping and papermaking conditions, species that form higher density
papers give higher compressive strength. In Figure 3, compressive strength is plotted against
double-wall thickness for the four softwood varieties in the review; spruce gives the best compressive
strength, followed by western hemlock, loblolly pine and Douglas-fir (Seth et al., 1986).

Figure 3. Paperboard compression strength graphed against fiber double wall thickness. Top line is for a 5°,
bottom line for a 25° fibril angle (Seth et al., 1986).

In practice, over 80% of the kraft board manufactured in the United States is produced in the
south. Compressive strength is largely controlled by sheet density under typical paper machine
conditions as seen in Figure 4 (Wink et al., 1982). Southern producers can adjust for the performance
characteristics of the southern fibers by improving wet pressing and refining to lower freeness, but
it is not possible for the northern producers to adjust for the comparatively high wood costs. For a
commodity product such as linerboard, the cost issues are of greater concern than the marginal
performance improvement available with thin-walled northern fibers.
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Figure 4. Paper compressive index plotted against paper density. Normal machine densities fall between 0.5
and 0.7 g/cc (Wink et al., 1982).

CONCLUSIONS

Over the past half century, the southern U.S. has come to account for over half of the pulp and
paper products produced in the United States. The south provides significant advantages in wood
costs but, in most paper grades, the southern pine fiber has poor performance characteristics and
requires greater care in papermaking. In mechanical pulps, high energy requirements and poor
performance characteristics of the southern pines are a serious problem for the industry, and U.S.
expansion in mechanical pulping capacity has been limited since the late 70's. A few southern
producers manufacture coated papers, but they must work harder to match the quality of coated
paper products from the northeast and north-central states, Canada and northern Europe.

The southern pine industry has benefitted from the improved paper stiffness using the bulky
southern pine fibers in production of solid bleached paperboard, but advances in multi-ply
papermaking technology have improved the paperboard quality from thin-walled fibers, and
northern producers are now able to compete with the southern industry. In corrugated containers,
the lower cost of southern fibers dominates the market, but quality would improve with a thinner-
walled fiber supply (Fahey and Laundrie, 1968).

Like linerboard, southern pines are a commodity. The paper industry adjusts for their
performance limitations to take advantage of the low price and availability. In a quality-conscious
world, forest scientists need to search for the means to improve southern pine performance. Low-
density southern pine variants with thin fiber walls should give improved performance in most
paper products. Since the performance requirements of the paper industry oppose the needs of the
solid lumber products industry, the forestry industry needs to develop the capability to select,
breed, and deploy trees for a specific end use—if they hope to please both customers.
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