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Abstract.--Two applications of Best Linear Prediction (BLP)
were demonstrated and compared. One method obtains variance and
covariance components (homogeneous second moments) from a combined
ANOVA based on theory and expected values to predict breeding
values for all parents in all environments in a breeding zone.

The other method combines variances of family means from separate
ANOVAS from each test with family mean correlations between tests
to obtain heterogeneous second moments. When there are large
environmental differences and genotype x environment interactions
such that there are distinct breeding zones, the second method may
be used to predict the breeding values of those parents best
suited for specific target environments.

Kevwords: Pinus taeda L., Best Linear Prediction, full-sib
progeny test, type B family mean correlation, breeding value.

INTRODUCTION

Anyone who has worked in a large progeny testing program recognizes the
need for appropriate, powerful and robust systems for analyzing progeny test
data and estimating breeding values for roguing seed orchards and making
selections for second- and future-generation seed orchards. Although well
established statistical methods exist for analyzing such data for a wide
range of mating and experimental designs, these traditional methods assume
balanced data sets at all levels of replication. When these equalities are
seriously violated, traditional methods do not work well without costly and
time-consuming adjustments, such as missing plot estimates.

Animal breeders have long been acutely aware of this problem, since the
data sets they work with rarely have equality of replication. Balanced data
sets are almost unachievable, since different herds are not equal in size,
and it is not practical to equalize them. Therefore, animal breeders have
been compelled to seek methods in which selection could be accomplished in
very unbalanced data (Henderson 1984, White and Hodge 1989). The two most
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recently developed methods are Best Linear Prediction (BLP) and Best Linear
Unbiased Prediction (BLUP). The utility of both methods is currently growing
due to the increasing availability and power of computers, especially of
personal computers. This paper will be concerned only with BLP and its
analysis on a Compaq 386 personal computer, since BLUP requires a more
powerful computer system for any large data set.

METHODS AND MATERIALS

The FEssential Components of the BLP Equation

The methods used in these analyses are described by White et al. (1986)
for half-sib tests and by White and Hodge (1989) for many other applications,
including full-sib progeny tests. The latter source should be consulted for
any questions concerning the theory of BLP. A principal utility of BLP is
that it can be used to evaluate the performance of parental genotypes in a
full-sib progeny test.

A principal assumption of BLP is that the first and second moments are
known (Henderson 1984, White et al. 1986). Second moments are specified in
two matrices, C and V. The C matrix is a nonsymmetric matrix which defines
the genetic relationships between the observed full-sib family means at each
site and the true but unknown breeding values, g. Each column of C
represents a parental breeding value to be predicted. The elements
comprising C are calculated from genetic theory (White et al. 1986).

The V matrix is a symmetric matrix which represents the variances and
covariances between the observed phenotypic values. The main diagonal
comprises variances of family means for each planting location. In full-sib
progeny tests the covariances in the off-diagonals that are not zero are
covariances between family means which refer to either: (1) different tests
with two common parents; (2) different tests with one common parent; or (3)
the same test with one common parent (White and Hodge 1989). Once these
matrices have been specified, breeding values can be predicted by means of
the following formula:

where C and V are defined above, y = a data vector of observed deviations of
the family means at each location from the location mean, and Eiz the
breeding values to be predicted.

The Data Analyzed

The trait considered in the following analyses was total height at age
5, and observations were full-sib family means at each site. All data were
collected from four loblolly pine (Pinus taeda L.) progeny tests in southern
and one in northern Mississippi. Test locations were as follows:
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Test Ranger National Number of Number of

Number District Forest Full-sib Check Lots
Families

070001 Black Creek Desoto 20 4

070002 Strong River Bienville 26 4

070004 Homochitto Homochitto 28 4

070005 Strong River Bienville 28 4

070006 Holly Springs Holly Springs 29 5

Tests 070001 and 070002 were planted in 1978, and tests 070004, 070005 and
070006 were planted in 1979.

The numbers of families plus check lots that any two tests had in common
ranged from a low of 14 to as many as 32. All families comprised seven
unrelated 6 x 6 element diallel crossing groups, none of which were
complete. The number of crosses per crossing group ranged from two to 13 of
the possible 15. Also, tests 070001 and 070002 had four replications,
whereas tests 070004, 070005 and 070006 each had three replicates. Hence,
considerable imbalance existed in the overall data set.

Two Approaches to BILP

Basically, there are two ways of approaching BLP. One method obtains
variance and covariance components (homogeneous second moments) from a
combined analysis of variance based on theory and expected values. The other
method combines variances of family means from separate ANOVAS for each test
with family mean correlations between tests (Type B correlations, Burdon
1977) to obtain heterogeneous second moments. The first method assumes equal
variances at all sites and equal levels of genotype x environment
interactions between all pairs of sites; the second method is useful if the
different sites have unequal variances and assumes different levels of
interactions between different pairs of sites. We may obtain breeding values
for a target environment which differs in some respect, say elevation, from
the other environments being sampled. Both methods are evaluated and
compared in the following discussion.

Homogeneous Second Moments

To implement the first method, the five tests were analyzed as a
combined ANOVA for total height by means of the VARCOMP Procedure of the
Statistical Analysis System (SAS 1987) for Personal Computers. This analysis
obtained the variance components needed to derive appropriate variances and
covariances to be entered into the C and V matrices included in the BLP
equation.

A full-sib family mean of the cross of parents j and k at a single site
i is designated Y;5x. The variance of family means from the combined ANOVA
of the test was Var (yisx/ = 1.0088 with b = 3.3333 replicates per test and
n = 8.9738 trees per plot, harmonic mean basis. The variance of family means
comprises all elements on the main diagonal of the V matrix. The covariance
of family means with two common parents in separate tests was
Cov (Yi4kx1/¥i'9x1l = 0.6243. The covariance among families with one
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common parent in separate tests was Cov(yigxi, Yirsk1)= 0.2930 - The
covariance among families in the same test-with one common parent was
Cov(Yigri, Yigrir+) 0.3337. These covariances comprise the off diagonal
element of the V matrix. The covariance between the observed family mean
and the true breeding value was Cov(yisxi, 9/ = 0.5860. This last
covariance is the single constant element comprising the C matrix.

The next step was to use PROC MEANS to obtain means for each family at
each location. These data were modified by obtaining the differences between
the family means and each location mean. These marginal means form the y
vector shown in equation 1.

All of the above matrices and vectors may be manually loaded into the
format appropriate for running SAS Interactive Matrix Language (IML), but for
large data sets it was essential to devise a runstream which loaded these
matrices automatically. The language needed to write such programs is
defined in the SAS IML Guide for Personal Computers (1985). Such programs
were used to load all matrices used in these analyses. Portions of the V and
C matrices used in these analyses are presented in Tables 1 and 2.

Table 1. A portion of the V matrix derived from the combined ANOVA of the
loblolly pine full-sib progeny test.

V=11.0088 .6243 .6243 3337 3337 .3337 3337 3337 .3337 3337
.6243 1.0088 .6243 3337 .3337 .3337 3337 3337 .3337 3337
06243 .6243 1.0088 3337 3337 3337 3337 3337 3337 3337
3337 6243 .6243 1.0088 .2030 2930 3337 3337 3337 3337

3337 3337 3337 3337 3337 .6243 .6243 .6243 .6243 1.00s81; -

Since the V matrix shown in Table 1 represents a single diallel crossing
group, it does not indicate the full size and complexity of the full data
set. The largest matrix was a 50 x 50 element matrix, the smallest a 10 x 10
element matrix. A full matrix comprising all family x location means would
have required a 152 x 152 element matrix. The largest that our Compaq 386 PC
could invert in the IML procedure was a 65 x 65 element matrix. The
subdivision into seven unrelated crossing groups made it possible to
construct matrix subsets with no loss of information.

Heterogeneous Second Moments

The procedure utilizing heterogeneous second moments requires an
additional step. In this example separate sets of breeding values were
predicted, each set targeted for the environment represented by one of the
test locations sampled. First, ANOVAs were performed to obtain variances of
family means for each location. Second, two kinds of correlations were
obtained between all locations: (1) correlations based on two common parents
(full-sib family means); and (22) correlations based on one common parent
(half-sib family means). The variances of family means and correlations were
then combined to obtain family mean covariances (Type B family mean
covariances, Burdon 1977; White and Hodge 1989) among all test locations
according to the following general formula:
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1/2
Covi(yiyxVirsx] = Tee [ Var(yijxl Var(yir4xl ] €]

where Cov(V;sx,vVi 5kl is the Type B covariance of family means, rge is
the correlation between family means in each test, and Var(y ijx) and
Var (yi 5kl are the variances of family means of each of the two tests
respectively.

Table 2. A portion of the C matrix derived from the combined ANOVA of the
loblolly pine full-sib progeny test.

C={5860 0 0 0 5860 0,
5860 0 0 0 5860 O,
5860 0 0 0 5860 0,
5860 0 0 .5860 0 0,

0 0 0 .5860 0 0,
0 0 0 0 0 .5860};

A subset of the V matrix comprising some of the heterogeneous variances
and covariances produced by this approach is presented in Table 3, and a
subset of the C matrix comprising the appropriate covariances is presented in
Table 4.

Table 3. A portion of the V matrix derived from separate ANOVAs of loblolly
pine full-sib progeny tests and Type B correlations and covariances.

V-{1.0485 .7600 .5282 4171 .5110 1.0019 .5430 .4155 1.0019 .5430
7600 1.3308 .9553 4830 .2216 .5430 .8021 .7709 .5430 .8021
.5282 9553 1.5112 .6765 .0442 4155 .7709 1.4217 .4155 .7709
4177  .4830 .6765 1.1012 .5419 .7748 .9626 .9796 4171 .4830

Table 4. A portion of the C matrix derived from separate ANOVAS and Type B
correlations and covariances.

C={.8342 1.0220 2.0038  1.0282 .8310 0 0 0 0
.9660 4432 1.0282 1.6042 1.5418 0 0 0 0
1.0492 .5366 .8342 .9660 1.3529 0 0 0 0
.5366 .8402 1.0220 4432 .0883 0 0 0 0
.8342 1.0220 2.0038 1.0282 .8310 0 0 0 0

The following equation was used to obtain the elements of the C matrix
from family mean correlations and variances of family means:

) ]1/2

Cov(yijk, 9) = 2 ree(hi, hy) [ Var(yisx) Var(yrsx (3

where Cov(gnd x,qg) 1s the covariance between the observed family mean
the true but unknown breeding value of one parent (say k), ree(hi,hr
test
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environment and those of the target environment, and Var(y
Var(yTjkware the variances of half-sib family means of the reference test
environment and the target environment respectively.

RESULTS AND DISCUSSION

A sample of the breeding values obtained by the method using homogeneous
second moments is shown in Table 5' and a sample of the breeding values for
each of the five target environments is given in Table 6. Space does not
permit a full listing of all breeding values.

The sample of 11 of the 38 breeding values generated by the method of
homogeneous second moments shown in Table 5 has a good range and shows the
general forest area (GFA) check lots to be below average. One measure of the
precision of BLP is the estimated correlation between the true and predicted
genetic values (CRGG) :

In southern Mississippi there is no valid reason to obtain separate sets
of breeding values for each target environment. We have been unable to
identify any environmental variables that provide reliable criteria for
labelling such environments. For example' southern Mississippi does not have
significant elevational zones. However, test 070006 is on the Holly Springs
District in northern Mississippi, which is a different breeding zone. Hence,
the rankings of some of the breeding values sampled in Table 6 change
considerably when predicted for the target environment associated with test
location 070006 on the Holly Springs District. This enables us to utilize
those interactions because we can identify suitable criteria which
characterize a population of such sites. If we wish to breed a set of
families from southern Mississippi suitable for planting in northern
Mississippi, we could set aside an orchard block consisting of those families
targeted for that zone. This method of BLP based on ANOVAs in separate tests
and Type B correlations and covariances between tests offers a useful and
powerful tool for analyzing unbalanced data from full-sib progeny tests when
target environments can be identified.

CONCLUSIONS

The precision and significance of these tests are not measurable' since
we do not have the luxury of F tests or t tests. However' there are valid
reasons to have some confidence in the relative precision and reliability of
predicted breeding values for both methods. For example' employing the
method utilizing homogeneous second moments gave high estimated correlations
between the true and predicted breeding values (CRGG), on the order of 0.6 or

320



greater, which suggests that precise estimates of the second moments were
obtained. White and Hodge (1989) note that it is probably necessary to
analyze tests having at least 30 unrelated parents to obtain precise
estimates of the second moments. The present set of tests would seem to
satisfy this condition.

Table 5. Eleven breeding values for height at age 5 in loblolly pine for
tests 070001' 070002' 070004, 070005 and 070006 obtained from best linear
prediction based on homogeneous second moments.

1/ An open-pollinated seed orchard clone. 22/ A general forest area check lot.

However' the poor sampling of the crosses resulting from the
incompleteness of some of the crossing groups probably causes the predictions
of those particular breeding values to be very unreliable. For example' in
Table 5 parents 227 and 243 in crossing group 8 have identical breeding
values because they are crossed only with each other. Decisions on the fate
of parents in such poorly sampled crossing groups may be postponed until data
from other tests provide more complete information.
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Table 6. Six breeding values for height of loblolly pine at age 5 for each
of five target environments based on data measured in tests 070001' 070002,
070004"' 070005 and 070006 obtained from best linear predictions utilizing
heterogeneous second moments' including rankings of each breeding value in
each test.

Crossing Breeding Breeding value

group Parent Test Rank value' height + mean height
feet feet
2 213 070001 4 1.53 16.92
7 238 070001 1 3.16 18.55
41 903105 070001 13 0.84 16.23
50 903413 070001 32 -2.05 13.34
8 247 070001 24 -0.76 143 63
3 209 070001 36 -2.68 12.71
2 213 070002 6 2.06 17.45
I 238 070002 1 5.92 21.31
41 903105 070002 7 1.84 17.23
50 903413 070002 33 -3.45 11.94
8 247 070002 32 -1.85 13.54
3 209 070002 15 0.16 15.55
2 213 070004 8 2.56 17.95
7 238 070004 1 5.21 20.60
41 903105 070004 9 1.68 17.08
50 903413 070004 35 -4.66 10.73
8 247 070004 34 -2.14 13.25
3 209 070004 25 -1.20 14.19
2 213 070005 8 1.29 16.68
7 238 070005 2 2.41 17.80
41 903105 070005 3 2.14 17.53
50 903413 070005 32 -1.58 13.81
8 247 070005 25 -0.57 14.82
3 209 070005 34 -2.35 13.04
2 213 070006 16 0.61 16.00
7 238 070006 31 -1.05 15.87
41 903105 070006 12 1.38 16.77
50 903413 070006 25 -0.21 15.18
8 247 070006 17 0.58 15.97
3 209 070006 37 -4.89 10.50
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