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Abstract.--0One of the main functions of genetic tests is progeny
testing, that is prediction of breeding values of parents based on
performance of their offspring. By definition, parents with high
breeding values tend to produce offspring with superior performance
characteristics. Breeding values for a specific trait are
unobservable random variables that can never be known exactly.
However, because the information is useful in so many ways 1in tree
improvement programs, it is critical that they be predicted both
accurately and precisely.

This paper is divided into three major sections. First, we
highlight how breeding value predictions for all parents
(selections) can be used at many stages of a program to increase
genetic gain. Second, several factors are described that make it
difficult to precisely predict breeding values (i.e. rank parents)
from progeny test data: tests of different ages, tests of different
precisions, parents represented in different number of tests.
Finally, an analytical methodology called Best Linear Prediction is
discussed which was developed by dairy breeders specifically to
deal with "messy" progeny test data. This method and a related
method (called Best Linear Unbiased Prediction) may well have a
place in tree improvement programs that need to efficiently rank
parents based on multiple sources of "messy" data.

Additional Keywords: Best Linear Prediction, Best Linear Unbiased
Prediction, Messy Data, slash pine, selection index.

INTRODUCTION

Genetic tests are widely used in tree improvement programs for a variety
of reasons (see Libby 1973, McKinley 1983). One important function of genetic
tests is progeny testing: determining the values of parents based on the
performances of their offspring (Allard 1960, p470). For example, the
performances of open-pollinated offspring from first-generation selections
planted in randomized, replicated field tests can be used to rank the
selections. Selections whose offspring perform well for a specific trait, such
as disease resistance, are predicted to have high breeding values for that
trait. Breeding values are best thought of as unobservable random variables
whose values can never be known exactly, but only predicted (Henderson 1973,
1977, 1984 p. 38). That is, based on an observed sample of offspring from a
given parent (i.e. a selection) growing in progeny tests, we wish to predict
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how future offspring will perform under operational conditions (i.e. on
different field sites and possibly with different cultural treatments than
the progeny tests received).

Precise and accurate predictions of breeding values for all selections
in a tree improvement program are essential for maximizing genetic gain;
however, the "messy" nature of progeny test data from many programs
complicates the analytical procedures required to develop these predictions.
In this paper, we first highlight the many ways that accurate, precise
predictions of breeding values can be used to further tree improvement
programs. This is followed by a description of the types of "messy" data
problems that arise and complicate the prediction of breeding values from
progeny tests. Finally, an analytical method is discussed which has been
developed to predict breeding values from "messy" progeny test data. Examples
are given from a slash pine breeding program to compare the new method to one
currently in use.

PRACTICAL USES OF BREEDING VALUES IN TREE IMPROVEMENT PROGRAMS

The precise, accurate predictions of breeding values are critical in tree
improvement programs because the predicted values are used in many ways to
increase genetic gains and further the breeding program (see McKinley 1983,
Lindgren 1986, white 1987). The brief description of these uses (below)
focuses on programs working with sexually-propagated species, though the
concepts also apply to vegetatively-propagated species (much of this is
adapted from white 1987).

Production Population

The production population in any given generation of breeding is that
group of selections used to produce propagules for operational forestation.
Clonal (grafted) seed orchards are the most common type of production
populations in first-generation tree improvement programs. Increased yield and
product quality from the harvesting of these improved forests are the primary
realized benefits of most tree improvement programs. Once selections have been
ranked based on their predicted breeding values, the production population can
be managed to achieve maximum genetic gains.

1. Upgrading the Production Population: Low ranking members can be
excluded from the production population and therefore not allowed to
contribute genes to operational plantings. As examples, inferior clones can be
rogued from first-generation orchards and/or mid-generation orchards (i.e 1.5
generation orchards) can be established which include only superior genotypes.

2. Tailoring Deployment Strategies: The predicted breeding values can
also be used to enhance deployment of seed (or vegetative propagules) to
specific planting sites. Many companies in the Southeast collect orchard seed
and keep it in separate categories for deployment. For example, seed from
clones known to be resistant to fusiform rust can be deployed to planting
sites expected to experience a high Tlevel of exposure to the disease.
Deployment strategies can become quite complex and may involve greater use of
seed from clones with high predicted breeding values (Lindgren 1986) .



Breeding Population

1. Upgrading the Breeding Population: If the intermating of selections
is delayed until after progeny test results are available, Tow ranking
selections can be excluded from the breeding population. This increases the
genetic quality of the base population of offspring from the intermating,
because superior genotypes contribute a higher proportion of the alleles. This
potential increase in gain has to be weighed against the time delay of waiting
for the progeny test results and the reduction in effective population size.

2. Enhancing Mating Designs: Predicted breeding values can be used to
create more efficient mating designs. As only one example (see White 1987),
parents with high predicted breeding values can be used in more crosses
(Lindgren 1986).

Advanced Generations

1. Increasing Gain from Selection: Advanced-generation selections will
typically be made in the pedigreed base populations generated by intermating
the members of the breeding population. The predicted breeding values will be
used as parental information to aid in finding the best families within which
to make selections.

2. Other Uses: The predicted breeding values of the selections of a
previous generation of breeding can continue to serve as ancestral information
to be combined with the data obtained from the testing the current
generation's selections. This enhances gain by increasing the precision of the
current breeding value predictions.

MESSY DATA PROBLEMS IN BREEDING VALUE PREDICTION

Progeny tests are usually replicated across both years and diverse
planting locations, but because of space Timitations in any one field site,
all selections are usually not represented in any given test. Data must be
combined across multiple tests to develop breeding value predictions and some
of the potential factors which can complicate this data analysis are briefly
summarized below (see White et al 1986 for more details).

Test Age

Sometimes, tests are established over a wide range of years and test data
ranging from say 3 to 15 years old must be combined into a single breeding
value prediction for each trait (such as volume growth) for each selection.

For growth traits, the older data will probably be more reliable in predicting
relative growth performance at harvest (Lambeth 1980) and should therefore
receive more weight in the prediction process. This may differ for different
traits.

Test Precision
Family means (and rankings) vary 1in precision from test to test. Tests

with small numbers of blocks, variable environmental and vegetation
conditions, poor survival, etc, will be Tess effective in ranking families



based on genetic values. In these "poor" tests, more of the variablility in
family means is attributable to spurious environmental effects and,
intuitively, it seems they should receive less weight in the development of
breeding value predictions.

Parents in Different Numbers of Tests

If parents are represented in different numbers of tests and are ranked
by the grand family means calculated across all tests in which each occurs,
parents with the highest and lowest ranks will tend to be those in the fewest
tests (White et al. 1986). This occurs because family means based on many
tests will have a lower spread (variance) than those in few tests. This
"variance" problem is well known in dairy breeding (Henderson 1973) and
results in ranking errors since too many of the high ranking parents will tend
to be the Teast tested (i.e. in fewer tests).

BEST LINEAR PREDICTION OF BREEDING VALUES

Most approaches to the analysis of "messy" progeny test data in forestry
(Hatcher et al. 1981, Cotterill et al. 1983) treat family means as fixed
effects (Class I model of Eisenhart 1947) and aim at developing family mean
estimates of which are adjusted to be free of the complicating factors
described above. An alternative analytical approach, developed by Henderson
(1973, 1977, 1984), treats parental breeding values as unobservable random
effects to be predicted from the observed sample of offspring in progeny tests
(Class II model of Eisenhart 1947). This approach Teads to two analytical
methodologies, Best Linear Prediction (BLP) and Best Linear Unbiased
Prediction, the Tatter of which is used extensively to predict breeding values
in animal science. we believe that both of these methods can be useful in
predicting breeding values from messy progeny test data in forestry. Both
methods involve similar Togic and rationale; here we first briefly describe
the principles of BLP (see White et al. 1986 for a more complete description)
and then summarize its application to open-pollinated slash pine progeny
tests.

Properties of BLP

The formula for calculating Best Linear Predictions is (see Henderson
1973, 1977, 1984 for derivation):

Here, y is an nx1 vector of observed data (e.g.,family means from open-
pollinated progeny tests) being used to predict g, a px1 vector of breeding
values for the p parents represented in the tests. C is cov(y,g'), an nxp
matrix of genetic covariances between the observed data and the breeding
values being predicted (for example, the covariance between an observed family
mean for volume at 5 years with the breeding value of the parent for volume
production at maturity). V is var(y), an nxn matrix of variances and
covariances among the observations (e.g., the variance of family means in a
given test and the covariances between family means in different tests).



Finally, (y-a) expresses the data, y, as deviations from their means, a (e.g.,
family means from a given test expressed as deviations from the overall test
mean). Predictions from this approach have many desirable properties if C, V,
and a are known or well-estimated (see Henderson's work).

BLP uses observed data from any ages and traits to predict the breeding
values for the traits of interest. This applies to a wide variety of cases
including prediction of multiple traits (e.g. volume growth at maturity and
rust resistance), different types of relatives, data of different ages and
precision and prediction of traits not observed directly (indirect
prediction). BLP 1is an application of selection index (Hazel 1943) that
develops a different set of index coefficients for each parent. C'V™' can be
thought of as developing multiple regression coefficients relating y to g
(Thompson 1979).

The set of coefficients developed for a particular parent reflects the
quality (age, precision) and quantity of data observed for that parent.
Predicted breeding values will tend to spread out more (have larger variances
among predictions) when there are lots of observed data of high precision that
are closely correlated to the trait being predicted. Conversely, if the data
are sparse, imprecise and poorly correlated with the trait being predicted
(such as using juvenile progeny test volumes to predict mature volume breeding
values), the predicted breeding values (of the mature trait being predicted)
will cluster more closely around zero. Heuristically, if the deviations of
observed data about their means, (y-a) , mostly reflect environmental as
opposed to genetic causes and are not correlated to the trait being predicted,
then they are shrunken (regressed) back towards the mean farther. BLP weights
each observed family mean according to its precision and degree of correlation
with the trait being predicted and thus handles all of the "messy" data
problems described above in one step.

Application of BLP to Slash Pine Open-Pollinated Progeny Test Data

The Cooperative Forest Genetics Research Program (CFGRP) began in the
mid-1950's with the mass selection of superior slash pine phenotypes from
natural stands and plantations (Goddard 1981). Each cooperating organization
made 50-200 selections (cooperative-wide total ..z 1500) which were immediately
grafted into clonal seed orchards for the production of improved seed. As the
the orchards began to produce seed, cooperators used this orchard open-
pollinated seed to establish progeny tests of their selections. Tests were
established over a Tong period of time (1963 to 1983) and to date over 362
tests have been established. Test designs vary, but an average test 1is a
randomized complete block containing 30 families and 6 blocks with a seven to
ten-tree row-plot representing each family in each block. Each tree in a test
is measured at 5, 10, and sometimes 15 years old for rust incidence and
volume. Any given parent is represented in from 1 to 22 such tests.

The current analytical method for analyzing these progeny test data
calculates standardized average performances for each test and these are
averaged over all tests in which a parent occurs (see Cotterill et al. 1983,
Hatcher et al. 1981 for similar approaches). The standardized scores are
expressed in standard deviation units from the mean; for example, a parent
which was consistently superior for growth over several tests might have a
score of 2 while a poor parent would be, say -2. These standard scores have
been used to rank parents for the purposes of rogueing orchards,etc.



For BLP, breeding values to be predicted were rust incidence in a 50%
rust incidence environment and volume growth at 15 years (White and Hodge 1987
present complete details of this BLP application). These roughly correspond to
the rust and growth standard scores, but breeding values are always expressed
in the units of measurement as deviations from the average. Thus parents with
rust breeding values of say 20% (in a fifty percent hazard environment) and
say 1.5 cubic feet (a deviation of 36% above the average of 4.21 cu ft. in 15
year old progeny tests) would be good.

A subset of 28 tests with data for both volume and fusiform rust
incidence at all three measurement ages ( 5, 10 and 15 yrs) was used to
estimate variances and covariances for the C and vV matrices . Both variances
and covariances varied dramatically from test to test and predictive
regression models were developed to apply to test data not in the subset of
28. For rust, data from tests with very Tow or very high rust incidence levels
had smaller variances of family means and smaller covariances with the trait
being predicted (i.e. rust incidence in a 50% hazard environment). For growth,
family means from young tests (especially 5 yrs old) and from tests with high
coefficients of variation (large experimental error) had higher variances and
smaller covariances with 15 year volume. Data from these types of tests get
Tess weight and result in breeding values that are more "shrunken" or
"regressed" back towards the mean.

To apply the formula for BLP, family means were calculated for each test
and expressed as deviations from the estimated test mean (both checks and
family means were used to estimate test means). Preliminary Best Linear
Predictions of breeding values for rust resistance and volume at 15 years were
then calculated for approximately 1300 parents and compared to the
corresponding standard scores currently used. The coefficients of
determination between standard scores and BLP breeding values were r’=0.77
and r? = 0.52 for rust and volume, respectively. Also, for rust, the average
absolute rank change from standard scores to BLP was approximately 100, while
for growth it was +200. So based on these two measures of comparison, rankings
of the two analytical systems are more similar for rust than for growth.
Presumably, the fact that rust resistance is more heritable than growth and
that the data are not so dependent upon measurement age makes the rust data
Tess "messy" and therefore less benefit accrues from the use of BLP. For
growth, large rank changes between the two systems occurred in certain
situations. For example, a parent ranked high under the old system of standard
scores falls considerably in the ranks of the BLP system if its progeny test
data are from only a few, young, imprecise tests.

As described in the section on data problems, the standard score approach
results in a tendency for parents in fewer tests to be at the extremes of the
rankings. BLP has just the opposite trend. On the average in our slash pine
data base, parents are in approximately 4 tests in which volume was measured.
However, if the top 1% of the parents are selected to be used say in an
orchard, those 13 parents (out of z 1300) are represented in an average of
approximately 2.5 tests vs. 6 tests using standard scores vs. BLP. Thus, using
the standard score approach, there is a tendency to choose as the better
parents those that are in fewer tests, while with BLP the tendency 1is just the
opposite: if a parent is good in several tests, it is predicted to have a high
breeding value.



DISCUSSION

Best Linear Prediction treats progeny test data in an intrinsically
different fashion than do most methods based on averaging family means or
scores over tests. For data which is not very messy (tests of nearly the same
precision, tests of similar ages, and all parents in similar or large numbers
of tests), the benefits of BLP will not be of any practical importance. That
is, rankings from most approaches will be similar. However, whenever data from
a wide variety of sources ( varying ages or precisions, different types of
designs or relatives, greenhouse screening data, etc) need to be aggregated to
rank parents, BLP (and/or BLUP) may offer significant advantages. For
instance, in advanced generation breeding programs, it may be necessary to use
data from several generations of testing to precisely predict breeding values.
one distinct benefit of BLP is the ease in which multiple traits are handled.
Multiple trait selection indices are easily formed after or at the same time
as the predictions are made for the individual traits.

The accuracy and precision of BLP breeding values depend on the
estimation of the variances and covariances in the C and VvV matrices. while
more work is needed to assess the sensitivity of the predictions to errors 1in
estimating these second moments, we currently believe that for most tree
improvement programs they can be estimated well enough to make BLP or BLUP a
substantial improvement over conventional methods of analyzing "messy" progeny
test data.
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