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PROGENY TEST DESIGN AND ANALYSIS

J. P. van Buijtenen

Abstract.--A workshop on progeny testing was held in Auburn,
Alabama on June 15-16, 1982, sponsored by Cooperative Regional
Project S-23, "Breeding Strategies for Genetic Improvement of Com-
mercial Forest Trees in the South".

Topics covered were objectives of progeny tests; mating de-
signs; raising progeny test seedlings; field designs; test estab-
lishment, maintenance, and measurement; and data handling and ana-
lysis.

This paper summarizes parts of the workshop, particularly the
topics related to the design and analysis of progeny tests. Empha-
sis is placed on the practical rather than theoretical aspects, al-
though both were covered in the workshop.

Copies of the proceedings can be obtained from any of the co-
operating state agricultural experiment stations.

Additional keywords: Polycross, diallel, factorial design, nested
design, field layout, data handling.

INTRODUCTION

The following paper is a summary of the highlights of the S-23 Workshop
on progeny testing held in Auburn on June 15-16, 1982, emphasizing the design
and analysis aspects. It will touch on mating designs, field layout, and the
management and analysis of progeny test data. The choice of designs depends
to a large extent on the objectives and the overall breeding strategy of the
particular tree improvement program involved. As pointed out by McKinley
(1983), the most common objectives of progeny tests are: a) to provide infor-
mation for evaluating parents; b) to estimate genetic parameters; c) to pro-
duce a base population for advanced generation selection; and d) to estimate
realized gain directly.

Since it is not always possible to meet the progeny test objectives with
a single progeny test, it is often necessary to assign priorities. Such pri-
orities are sometimes difficult to identify and may depend on the goals of the
organization involved, the timing of the progeny test and the generation one
is working on. In the inception of a breeding program, delineation of seed
sources may rank very high, while at a later stage advanced generation breed-
ing may be the primary goal.

1/Principal Geneticist, Texas Forest Service and Professor, Texas Agricultural
Experiment Station, College Station, Texas.
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MATING DESIGNS

There is a large variety of mating designs. They can be divided into
two main groups, single designs and complementary designs. Since in a pract
ical breeding program, one usually tries to achieve several objectives at one
any single design may be reasonably useful for all purposes, but not necess
ily the best for any one of them. The concept of complementary designs is
based on the philosophy that it can be an advantage to combine several simple
designs, each of which is very efficient for one particular purpose.

Open-Pollinated Designs 

Open-pollinated progeny tests may be obtained from ortets as they occur
in the woods or ramets in seed orchards. Selections from open-pollinated pro-
geny tests obtained from seed orchards may be related, and crosses among them
may involve inbreeding and all the problems involved with inbreeding depres-
sion. Using open-pollinated seed from ortets in the woods avoids this pro-
blem, but one loses the gain associated with selection of the male parent.
Open-pollinated tests are useful to evaluate parents if the pollen is a good
mixture and does not vary much from tree to tree, but may be unreliable if
each female parent has a unique and different pollen sample. The experience
of several organizations indicates that there may indeed be a problem, since
the results of open-pollinated tests do not always agree with those of subse-
quently obtained control-pollinated tests. Open-pollinated tests of seed ob-
tained out of a seed orchard would seem a very appropriate means of determin-
ing realized gain in that particular orchard.

The Polycross 

The polycross design is in many ways similar to the open-pollinated test.
A set of pollens is mixed and used to make control pollinations. Polycross
tests are very good for determining general combining ability and, thus, for
evaluating parents, but generally are not suitable for making advanced genera-
tion selections, since inbreeding may result because of relatedness between
the offspring. Several interesting modifications of the polycross are discus-
sed by van Buijtenen and Namkoong (1983).

The Complete Diallel 

The complete diallel consists of all possible crosses among the available
parents. This design obviously will give the maximum amount of information
possible on the parents included in the test. The number of crosses, however,
goes up as the square of the number of parents and the cost and time required
very quickly become unmanageable. For an orchard including 40 clones, it
would, e.g., take 1,600 crosses to make a complete diallel.

The Modified Half-Diallel 

This is similar to the complete diallel, but omits the selfs and the re-
ciprocal crosses. Although the number of crosses is somewhat less than half
of that of the complete diallel, it is still quite large. Although it is
still possible to estimate both gca and sca, it is no longer possible to study
the effect of selfing and of making reciprocal crosses.
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The Disconnected Half-Diallel

This is a variant of the modified half-diallel created by dividing the
parents into equal sets and making a modified half-diallel within each set.
A disconnected six-tree half-diallel, e.g., would involve 15 crosses per set.
This kind of design is a reasonably good compromise that allows one to deter-
mine gca and sca. It is good not only for evaluating parents, but also for
identifying outstanding specific crosses. It also is quite useful as a means
of generating a population in which to make selections for the next generation.
There is a problem, however, in that usually not all disconnected diallels can
be planted in one field test, which means that one cannot capture the genetic
variation between the sets. Particularly in small sets this can be a substan-
tial amount since van Buijtenen and Burdon (1983) found that the amount of
additive genetic variation between sets is equal to the total additive genetic
variation divided by the number of parents. In the six-tree disconnected dial-
lels this would leave, for instance, 1/6 of the additive genetic variation
between the sets.

Partial Diallels 

In a sense, any set of crosses short of a complete diallel could be called
a partial diallel. However, one usually refers to a design consisting of one
or more sets of crosses following the diagonals across the diallel tables.
This again is a fairly good compromise that allows one to evaluate parents,
estimate genetic parameters, and make selections for the next generation.

Factorial Designs 

In a factorial design, two separate groups of parents are crossed with
each other in all possible combinations. In the disconnected factorial, the
same principle is followed as in the disconnected diallel: the population is
sub-divided into groups and the trees within each group are crossed according
to a factorial design. Pepper and Namkoong (1978) made a detail economic eval-
uation of both nested and factorial designs for progeny testing. The factorial
design is generally slightly superior to the nested design in terms of evalu-
ating parents. For evaluating genetic parameters, the factorial is usually
not quite as efficient as the various diallel designs. For selection of new
parents for the next generation, the factorial design can be quite satisfac-
tory if there are enough male parents. The four tester design employed for-
merly was not very well suited, because of the high degree of relatedness
among second generation selections which resulted from this design.

Nested Design 

In a nested design, one parent is crossed with a number of other parents.
Usually the male is the rare parent which is crossed with several females.
Each female, however, is crossed with only one male. The nested design is not
too efficient for many purposes, such as evaluating parents and estimating ge-
netic parameters. It could, however, work very well in a complementary design
where family selection is handled with a design such as a polycross, while the
nested design provides a source of trees for the following generation. This
would be particularly true if some of the parents are known already, in which
case the best general combiners could be assigned to the rare parent.
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FIELD DESIGNS

Field designs were discussed by Bridgwater et al. (1983). The bas
is again that the field design needs to be appropriate for the particul
jective being served. In an operational tree improvement program, quit
a compromise needs to be struck between a number of practical considera
and the needs of the various objectives to be accomplished. From the p
tioner's point of view, the question to be answered is a very simple one:
Where do I plant each tree? This is about where the simplicity ends. Bor
ing a concept from computer science, we can take the top–down or bottom-up
proach in discussing this problem and I'd like to follow the top-down appr

How Many Locations are Needed? 

Philosophies in this respect seem to differ widely by region. In the
South, the common procedure is to plant the same families on three or four
different locations. In some western programs, families may be planted in
to 16 locations. Which is the better approach depends on the type of tree
wants to select and on the amount of genotype x environment interaction that
is present.

Let's start by looking at the genotype x environment interaction. If no
genotype x environment interaction is present, in other words if all families
rank the same on all sites, one needs to test on only one site. If genotype
x environment interaction is present, however, one needs to make a decision.
One can either select a general purpose tree that may not grow the best at an)
given location, but will grow reasonably well at almost all locations, or one
can select genotypes that are specifically adapted to a given site. This will

greatly influence the strategy of the testing.

If one wants to select for a generally adaptable type, one could plant
relatively small numbers of trees per family in a given location and plant
families on many locations. This should give one the best possible evalua
although one would have only very limited information on the suitability ofa
particular family for a given site.

If one wants to know something about the adaptability to a specific site,
one needs to increase the number of trees per family planted at a given loca-
tion. Economics, as a consequence, will force a reduction in number of test
sites to keep the cost of progeny testing within reason.

Although I never heard anybody address this issue, I feel that the weste
tree improvement programs lean towards the general adaptability approach, whil
the southern programs are somewhat of a compromise evaluating general adaptab
lity, but also obtaining some information on the performance of a family at a
given site.

How Large Should a Test Be at a Given Location?

This is really not a meaningful question, since the size of the test it-

self is not critical. It is the size of a single replication that is critical
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To maintain soil uniformity within a replication, it is necessary to keep the
replication size as small as possible, about 1/4 to 1/2 acre maximum. There
is no definite limit to the number of replications one could include. The
number of replications needed depends on the precision desired and the plot
size, which will be discussed later. A typical test includes about 2,000
trees, although I've seen tests of less than 500 trees and tests of around
10,000 trees.

How Many Families Should Be Included in a Test? 

This again is closely tied to the size of the replications and the size
of the plots. If we assume that the maximum replication size is about 1/4
acre and the spacing is 8 x 8 feet, then the relation between plot size and
the maximum number of families included in a test is as depicted in Figure 1.
For a 1/2 acre replication and 10-tree plots, this would amount to about 34
families. Using single tree plots, one could accomodate well over 100 fami-
lies and keep the replications smaller than 1/2 acre.

F
Figure 1. Relation between plot size and number of families per test, assum-
ing a replication size of 1/4 acre and a spacing of 8 x 8 feet.

How Many Replications Per Location are Needed? 

Again this question cannot be answered categorically, it depends on the
precision desired and the plot size. There are sophisticated statistical for-
mulae available to calculate this, but in practice the total number of trees
needed per family remains relatively constant and is mainly distributed dif-
ferently between replications and number of trees per plot. This is not quite
true, however. Although one needs more replications with smaller plots, the
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total number of trees needed is somewhat less. In general, smaller plots and
more replications will give greater precision. In our experience, six repli-
cations and four trees per plot are definitely not enough, while ten replica-
tions of 10-tree row plots are probably more than needed.

How Many Trees Per Plot are Needed? 

This has been largely covered under previous headings, but a few things
remain to be said. Over the last 30 years, experiments have been put in,
which range from large 100-tree plots to single-tree plots. From a statisti-
cal point of view, the single-tree plots and a modification often called non-
contiguous plots offer the greatest advantages. However, they are very dif-
ficult to establish and maintain. Hundred-tree plots are too large, since
one could include only about six families in a 1/2 acre replication. As a
consequence, there usually is a large family by replication interaction making
it very difficult to distinguish between the performance of individual fami-
lies. Small row-plots utilizing anywhere from 4 to 10 trees per plot current-
ly seem to be most common. They allow a reasonable number of families per
test, are easy to handle in the field, and give good statistical precision if
a sufficient number of replications is used. They also lend themselves well
to making second generation selections, as selected trees can be compared to
the other trees within the same plot. Single-tree plots are very difficult
to use for second generation selections, since members of the same families
are scattered throughout a replication. We are currently looking at different
ways of evaluating single-tree plots and non-contiguous plots, but a satisfac-
tory solution has not been found yet.

Laying Out the Test in the Field 

This is by far the most critical and most difficult phase of progeny test
design. There is no such thing as a perfectly uniform piece of land and care
must be taken to properly cope with the different kinds of site variability
encountered. Following are some examples of site variability and what to do
about it.

1) Slope.--The common way to reduce the impact of slope on the evaluation
of the families is to lay out the replications parallel to the contour lines
and the rows perpendicular. This way there may be some increased variability
within the plots, but each family will sample roughly the same type of environ-
ment.

2) Pimple mounds, small depressions, and potholes.--Two approaches are
possible here. If the area is too large, it is best not to include it in the
test. This may cause the replications to be separated from each other, how-
ever, this is far preferable over including the soil variation. If the unus-
able areas are small, a common approach is to plant filler trees. These serve
to reduce border effects and are not included in the measurements.

3) Distinct changes in soil type.--Try to keep one replication in the
same soil type, thus, avoiding a change in soil type in the middle of one re-
plication. Again, this may cause one replication to be separated or off-set
from the others.
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PROGENY TEST DATA HANDLING AND ANALYSIS

This was discussed in considerable detail at the S-23 meeting (Lowe et
al. 1983), including the statistical aspects, but I will mostly highlight some
of the practical aspects.

Data Collection 

The most common way to do this is probably still by handwriting the num-
bers either on special forms or on 80-column computer coding forms. Regard-
less of the system used, it is nice to have the previous measurement available
on the form to help identify position in the field, to record recent mortality,
and use old measurements for confirming the validity of the new ones.

Recently new equipment has been introduced where measurements can be keyed
immediately into an electronic recording device. In principle, it is possible
to use a wand-like device to record tree identification just like it is done
in grocery stores. Labels, however, are subjected to a lot of dirt, wear and
tear in the field, and this approach has not turned out too well. The record-
ing devices themselves, however, have been quite satisfactory, and a number of
them are in use. Data can be transmitted over a telephone line to the main
computer after which data can be edited and stored. It is also possible to
load a file of previous measurements into the recording device which can be
displayed while new data are recorded, giving the same advantages as recording
new data along with previous measurements on paper. This field is developing
so rapidly that before very long there will be several cheap and sophiscated
devices on the market that will make a complete shift to automated data re-
cording almost unavoidable.

Data Editing 

In addition to proofreading, it is advantageous to run the data through
an editing program that will flag potential errors. This can be done, for
instance, by having it compare new measurements to previous measurements, and
by specifying ranges within which the data are expected to fall. Another way
to flag potential errors is to calculate standard deviations for each plot
and double check the plots with unusually large standard deviations. Other
items that the editing program should check are the genetic identification
codes, the number of replications, and the number of observations within each
replication.

Data Storage and Backup 

The data are usually stored on cards, tape, discs, or diskettes. It is
absolutely essential to have some form of backup. In other words if the data
are on tape, they should be on two separate tapes kept in two separate loca-
tions, or if the data is stored on a disc or diskette, they should be backed
up by tape or loaded on a separate disk. Data stored on electro-magnetic de-
vices are particularly vulnerable to complete or partial loss due to computer
failures. In addition, it is a good idea to have a paper backup such as a
recording sheet or a printout.
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Statistical Considerations

There is no need to go into detail on the statistical aspects, but I
would like to relate some of the major areas that were covered at the meet
A major portion was devoted to the analysis of single location tests. Thi

relatively straightforward if one has a well–balanced set of data in hand.
These seem to be a rarity, however. Fortunately, a number of computer pro
grams are available that handle unbalanced data relatively well, although
loss of precision usually occurs.

A much more difficult problem is the analysis of tests planted across
tiple locations. Inevitably some families will rank differently on one lit
tion than on a second location. This could be due either to inaccuracies in
the progeny test or because a particular family may be better adapted to one
site than the other. As discussed earlier, at this point one needs to decide'
whether one wants to select for a family adapted to a particular site or for
families that are adaptable to a range of sites. Regardless of the decision,-
one will have to determine how a given family responds to a range of site
qualities. This can be done fairly readily using a regression approach as is
illustrated in Figures 2 and 3. Some well–known seed sources are good exam-
ples of these type of responses. Livingston Parish loblolly pine, for ins
has a rather steep response curve, indicating it does relatively poorly on
site index land, but does extremely well where the site index is high. By
contrast, the drought hardy sources from the Lost Pines area in Texas have a
relatively flat response and do reasonably well on poor sites, but do not in-
crease their growth as much as Livingston Parish when planted on good sites.



Data Summarization Across Tests 

This is an extension of the problem discussed in the previous section,
except here the purpose is to rank families for roguing a seed orchard. Sev-
eral major problems need solving. The data are usually unbalanced and the
trees are planted over a range of sites. To put the data on a common basis,
the family averages at a given location need to be expressed in a way that is
independent of site. This can be done by expressing them as a percentage of
the checks. This does not always work too satisfactorily because different
tests may have different checks included, or they may have so few checks that
the check doesn't form a stable base line. Commonly it does work well to ex-
press a family as the percent of the average of the progeny test. This in it-
self can create problems, because some progeny tests may be composed of better
genetic material than others. Another good approach is to express the ranking
of a family in terms of standard deviations. The N.C. State performance index
is based on this principle (Hatcher et al. 1981).

A system that, as far as I know, has not been implemented anywhere, but
which theoretically looks the best is to weight family averages by plantation
according to their standard errors. In other words, the more reliable the ob-
servation, the higher weight it will carry. These weighted averages are then
fitted across progeny test sites using a least squares procedure. This gets
very demanding in terms of the amount of computer memory required, and the
data needs to be complete enough where the values of the families can be pro-
perly estimated. No system is totally satisfactory yet, but good progress has
been made.

CONCLUSIONS

The mating design and progeny test design need to be matched to the pro-
geny test objectives. One has the choice between some reasonable compromise
solutions and a complementary design consisting of a combination of single
tests, each serving a specific objective.

A revolution in data collection is underway with the advent of electronic
data recording devices. As fast as this field is developing, it seems likely
that the clipboard and notepad may suffer the same fate as the slide rule.

Satisfactory means of analyzing each type of design are available, in-
cluding programs that will handle unbalanced data. Several workable systems
of summarizing data across tests are available, but there is a need for fur-
ther improvements in technology in this area.
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