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ABSTRACT.--Concepts and procedures for heritability 
estimations through t h ~  variance components and the unified 
F-statistics approach are described. The variance components 
approachis illustrated by five possible family selection 
schemes within a diallel mating test, while the unified 
F-statistics approach is demonstrated by a geographic var- 
iation study. In a balance design, the use of the herit- 
ability formula h2 = 1-(1/F) is recommended. The F value 
is the same computed F value used in the analysis of var- 
iance for testing quality of genetic units. 

Heritability is defined as "degree to which a character is influ- 
enced by heredity as compared to environment" (Snyder 1972). Although 
the concept holds in a general sense, heritability estimates vary with 
the way they are calculated. Heritability can be calculated in four 
ways: (1) parent-offspring correlation estimates degree of resem- 
blance between parents and offspring; (2) regression estimates the 
selection differential in offspring as dependent on the selection 
differential in the parent; (3) intraclass correlation estimates the 
degree of resemblance among individuals within a genetic classification, 
and (4) genetic gain divided by selection differential estimates the 
efficacy of selection. These four methods are interrelated and may be 
used interchangably, but in certain cases adjustments should be made 
(Franklin 1974, Squillace 1974). 

Heritability and gain estimates apply only to the experiments 
from which they were obtained. Furthermore, the selection differ- 
entials and heritabilities must apply to the same things, which may 
be individual trees, or family means (Wright 1976). Although single 
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tree heritability and family heritability are formulated in most text- 
books (Lerner 1958, Falconer 1960, and Becker 1964), heritability for 
other genetic units such as stand, ecotype, family within stand, full- 
sib family within female parent, or family and site combination, are 
seldom available. 

In this paper we show how to break down phenotypic variation and 
construct heritabilities according to the experimental design, mating 
system, and selection scheme that are being used. The purpose is to 
help persons to make heritability estimates clearer and more consistent. 
In addition, we propose a unified formula for heritability, h2 = 1- (1/F) , 
where F is the computed value for testing the null hypothesis that all 
genetic units are equal. This heritability is useful for predicting 
genetic gain of the genetic units being tested'and selected. 

Variance Component Approach 

The basic concept of heritability is the genetic variance among units 
divided by the phenotypic variance among units. Therefore, the procedure 
for constructing heritability from analysis of variance can be described 
as follows: 

1. Compute phenotypic variance among units 
2. Identify variance components 
3. Assemble genetic variance 
4. Divide genetic variance by phenotypic variance 

2 h in the Clonal Test 

In the simplest case, a clonal test, each ramet is assumed to have 
received total and identical genetic information from the ortet. The 
phenotypic expression of a seedling is affected by the genetic effect 
of the ortet and the environmental effect, with the following model: 

where 'ij 
= phenotypic expression of the jth ramet from the ith ortet 

p = population mean in the test 

G i  = genetic effect due to the ith ortet (i = 1 to n) 

= random independent and normally distributed environmental 
Eij effect (i = 1 to n, and j = 1 to r) 

The ANOVA table is shown in table 1, where Ve and Vg are variance 
components for environment and genetics, respectively. 



Table 1.--Analysis-of-variance table for 
a completely randomized clonal test 

df : Source EMS 

Clone 

A Within n (r- 1) 1 n r t (Yij -Yi 2 V e 

n(r-1) i+l j=l 

To construct heritability for clonal selection, we proceed as follows: 

1. Compute phenotypic variance among clones and record as the value 
for Clone Mean Square. 

2. Identify variance components: obtain Ve + Vg from Expected Mean 
Square (EMS). 

3. Assemble genetic variance; solve two simultaneous equations for 
Ve and Vg and compute the value for rVg. 

4 .  Divide the value for rVg by the Clone Mean Square. 

Clonal heritability obtained is the form of rVg/(Ve2 + rVg), which is 
equivalent to the commonly accepted formula: h2 = Vg/ (Vg + Ve/r) (Burton 
and Devane 1953). 

2 h in a Diallel Mating Test 

Following the same procedure, we can construct heritability formulas 
suitable for various selection schemes after a diallel mating test. 

Under the diallel mating scheme, every male mates with every female 
parent. For monoecious species, diallel mating includes a cross and 
reciprocal cross with every other tree. The statistical model is a two- 
way analysis of variance: 

where Yijk = the phenotypic value of seedling K  produced from the ith 
male parent and the jth female 2arent (k = 1 to K ) .  



u = population mean 

M. = genetic effect from the ith male parent (i = 1 to I )  
1 

F. = genetic effect from the jth female parent (j = 1 to J)  
I 

MFij 
.= interaction between the ith male and jth female parents 

'ijk = experimental error (k = 1 to K)  

I n  the conventional diallel analysis, where components are estimated 
from the ANOVA, heritabilities are estimated for male parents, female 
parents, and interaction (full-sibs). However, there are other selection 
schemes possible and each has its own heritability. Computation is 
possible by considering the sum of squares for the components in the 
diallel mating'scheme. 

The partitioning of variance can be facilitated by working with the 
individual expectation of sum of squares as listed in table 2. 

Table 2.--Expectations of sum of square in a 
completely randomized diallel mating test 

Coefficient for 

Line : : 1-I a o a 
2 2 

Item : Interpretation . m Of m f w no. 

1 
eerxijk 

2 Individual I J K  I J K  I J K  I J K  I J K  

I J K  I J K  I J K  I J K  IJ 

3 CXi '/JK . . Half-sib in male I J K  I J K  I K I K I 

, 4 cx 2 / ~ ~  Half-sib in female I J K  J K  I J K  J K  J .j. 

5 x2 / I J K  Correction term I J K  J K  I K K I - - .  

Once we obtain the expected variance components for the sum of squares, 
we can proceed to the intermediate steps in formulating heritability: 

A .  The sum of squares for a "mu genetic unit within a "n" unit , 
SSQ m in n, is SSQm - SSQn. For example: 



SSQ individual in plantation = SSQ individual - SSQ correction term 

SSQ individuals within full-sib = SSQ individual - SSQ full-sib 

SSQ full-sib within male parent = SSQ full-sib - SSQ half-sib in male 

B. Heritability for differences among "m" units with "nl' units is: 

Genetic Variance Component in SSQ m in n 
SSQ m in n 

If we divide both the numerator and the denominator of the above 
formula by the degrees of. freedom associated with the llm in nfl unit, the 
numerator becomes genetic variance (Vg) and the denominator becomes 
phenotypic variance (Vp), and the result is the commonly accepted formula, 
h2 = Vg/Vp. It is easier to work with SSQ than MSQ and ignore the degrees 
of freedom. 

If we want to construct heritability for differences among full-sib 
families within male parent, we first determine the variance components 
within the SSQ full-sib in male. From lines 2 and 3 of table 2 we have: 

SSQ full-sib in male = SSQ full-sib - SSQ male - * * 

If we consider the first two terms as genetic contribution, the numerator 
in the heritability formula is: 

and the denominator is simply SSQ full-sib in male, or all of its associate 
variance components. 

If we further consider the genetic parameters in terms of additive 
2 genetic variance (Va) and dominance variance (Vd), we have a, = 1/4 (Va), - 

Q * = 1/4 (Vd) and u: = 2/4 (Va) + 3/4 (Vd) + u2 and the nherator becomes: mxf e ' 

IK (J-1)1/4(Va) + IK(J-1)1/4(Vd) + I(J-1) {2/4(Va) + 3/4 (Vd) 

and the denominator becomes: 

While the second consideration is more complete and academic, the first 
consideration is practical and useful in gain prediction. Heritabilities 
for family selection are therefore constructed on the basis of the first 
consideration (table 3). 
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Table 3.--Heritability computation for family selections 

:Variance Components in the Denominator 
Genetic : Error 

: (also used in the numerator) 
h2 for differences : Denominator: ---------- Coefficient for ---------- 

among "m" : within "n": obtained : 2 u 2 u 2 - (m> (n> : from lines : om a f m f w 

plantation 2 - 5 JK(1-1) IK(J-1) K(1J-1) IJ-1 
Male 2-3 - - IK(J-1) IK(J-1) I (J-1) 
Female 2 - 4 JK(1-1) -- JK(1-1) J(1-1) 

plantation 3-5 JK(1-1) . --  K(1-1) (1-1) 
Female 

Plantation 4-5 - - IK(J-1) K(J-1) (J-1) 

In short, the generalized procedure for constructing heritability from 
analysis of variance is modified as follows: 

1. Compute sum of square among genetic units as the denominator. 

2. Identify variance components which will have contributed to the 
genetic gain. 

3 .  Assemble these contributing variance components with their 
coefficients as the numerator. 

The h2 = 1- (1/F) Appro_ach 

The basic concept of this unified formula is that all sources of variance 
within a genetic classification are considered as error as far as predicting 
gain from selection among such classification is concerned. For example, in 
a half-sib progeny test, 314 of the additive genetic variance and all of the 
dominance genetic variance present within family are useless for mother tree 
selection and are consequently included in the error term. 

The F value for testing equality of means is a variance ratio: among- 
group variance divided by within-group variance. Therefore, the formula 
h2 = 1/ (1/F) is: h2 = 1- 11 (MS group/MS error) 

= MS group - MS error 
MS group 

= Phenotypic Variance - Error Variance 
Phenotypic Variance Among Groups 

= Genetic Variance Among Groups 
Phenotypic Variance Among Groups 



The steps in constructing this heritability are simply: 

1. Calculate the F value suitable for testing the quality among 
groups. 

2. Insert the computed F value and solve for h2 = 1-(l/F). 

Most geographic variation studies fit the nested model and are useful 
here as an example. Stands (Si.) are nested in different regions (R.). 
Within-stand variation is consi3ered to be environmental random erro* 
(Eijk). We can express the model as: 

The analysis of variance table is as follows: . 

Table 4.--Analysis of variance table for a nested design 

Source : df : MS F EMS 

Region 

Stand/Region s-r 

o" no2 + sncr 2 e s r 

Error rsn- s MSe 0: 

Total rsn- 1 

To compute heritability for regional difference, the F value to be 
used in the formula is obtained from MSr/MSs. By the same token, to 
compute heritability for stand difference within region, the F value is 
MSs /MSe 

Fixed and Random Models and Corresponding Heritability 

Analysis of variance models may be classified as fixed, random, or 
, mixed effect models. An effect is considered to be fixed if the researcher 

is interested only in the various levels of treatment used in his experi- 
ment. On the contrary, an effect is considered to be random if the 
researcher is interested in the population from which the treatments were 
drawn. The mixed effect model includes some treatments in fixed effects 
and some in random effects. An example using a multiplantation multiyear 
half-sib progeny test under various assumptions will help to interpret 
the heritability formula (table 5). For fixed effects the variance 
component represents variance among treatments in the experiment. For 



random e f f e c t s  t h e  var ious  components r ep re sen t  var iance  of  t h e  
popula t ion  from which t h e  sample of t rea tments  were drawn. 

I. Fixed Ef fec t :  Mother Tree. Random E f f e c t :  S i t e  and Year. 

In  t h i s  case  we would be i n t e r e s t e d  i n  s e l e c t i n g  mother t r e e s  t h a t  
would perform well  on an average s i t e  through t h e  yea r s .  The F t e s t  f o r  
mother t r e e  i s  M/(MS + MY - MSY) (Kempthorne 1967). S u b s t i t u t i n g  t h e  
expected mean square i n t o  t h e  h e r i t a b i l i t y  formula, we have: 

- - ' Vm 
Ve Vsym Vym Vsm + + - + - + -  

nsy SY Y s Vm 

The i n t e r p r e t a t i o n  of  t h i s  formula i s  t h a t  a l l  e f f e c t s  o the r  than t h e  
mother t r e e  a r e  u s e l e s s  e r r o r s  i n  s e l e c t i o n .  

Table 5,--Multiplantation and multiyear model for heritability 
cornputatton hnly tbe relevant EMS are l isted)  

Source d  f  MSQ : EMS 

S i t e  s- 1 
Year Y- 1 
SxY (s-1) (Y-1) 

Mother t r e e  (m-1) 
MxS (m-1) (s-1) 
MxY (m-1) (Y-1) 
MxSxY (m-1) (s-1) (Y-1) 

Repl ica t ion  sy  (n- 1)  
Er ror  sy  (n- 1) (m- 1)  

S  
Y 

SxY 

M Ve+nVsym+nsVym+nyVsm+nsyVm 
MS Ve+nVsym +nyvSm 
MY Ve+nVsym+nsVym 
MSY Ve+nVsym 

11. Fixed Ef fec t :  Mother Tree and S i t e .  Random E f f e c t :  Year 

In  t h i s  case  we would be i n t e r e s t e d  i n  s e l e c t i n g  mother t r e e s  t h a t  
would perform well  on a  s p e c i f i c  s i t e .  The F t e s t  i s  M/MY. So we have: 



Under this mode1,both mother tree and mother tree x site interaction are 
genetic and useful, while error, mother tree x year x site and mother 

- tree x year, are considered as non-genetic and useless. 

111: Fixed Effect: Mother Tree, Site and Year 

, If the year effect is found to be related to some controllable factors 
(for example, amount of rainfall and pattern of rainfall can be simu- 
lated by irrigation), then we might be interested in selecting mother 
trees under a specific site and repeatable conditions. The F test in 
this model is M/E. So we have: 

Ve Vsym Vym Vsm - + - + - + -  
nsy SY Y S 

The interpretation would be that of all the mother tree effect and its 
interaction with site and year are genetic and useful for selection. 

Discussion and Conclusions 

For a given model, both approaches yield an identical estimate of 
heritability. When the experimental design is balanced, the h2 = 1-(1/F) 
approach is recommended. The procedure is simple and useful for predicting 
genetic gain for the units being tested. The F-value is readily avail- 
able from the analysis-of-variance table used for testing the quality 
of genetic unit means. There is no need to compute variance components 
and their coefficients, no worry about negative components, and no 
doubt about what goes into the heritability formula. However, the model 
that is being used and its implications must be thoroughly defined, and 
the F-value should be significant at a certain level. For example, it 
would be in error in a one-parent progeny test to consider families as 
fixed effects and then apply heritability and genetic gain values to the 
parent population. The concept of model effects and the appropriate 
F-value are more common than the expected variance components in most 
introductory statistics books (Li 1964, Ost!e 1964, Bliss, 1967, and Daniel 



1974). It appears to be easier for tree improvement workers to find 
the appropriate F-ratio than to determine which genotypic x environmental 
interactions should be included in the error term of the heritability 
formula. 

If the experimental design is not balanced, the task of formulating 
a valid F-value may be as difficult as solving variance components. In 
an unbalanced design, the F-ratio and consequently the heritabiility is 
only an approximate value. Most provenance tests can be handled as nested 
analysis of variance with unequal sample sizes. Sokal and Rohlf (1969) 
gave two good examples in computing variance components and the approxi- 
mate test of significance based on a reconstituted mean square. 

The h2 = 1-(1/F) conceet regards any repeatable effect present among 
genetic units as inheritable. For example, when testing wind pollinated 
progenies, the mother-tree effect includes not only the additive genetic 
contribution of the mother tree, but also the contribution of the wind- 
borne pollen as well as the extra chromosomal inheritance. On the other 
hand, this formula disregards any genetic variance within units. The 
variance components approach, by defining genetic and non-genetic 
variances, can demonstrate explicitly the definition of heritability 
(that portion of phenotypic variance due to genetic effects). However, 
the h2 = 1-(1/F) approach is functional for predicting gain in family, 
stand, and ecotype units. 

The h2 = 1-(1/F) approach is restricted to the units being tested 
and selected, whereas the variance components approach is more flexible 
in estimating other related heritabilities. For example, in a progeny 
test, heritability of individual differences, useful in predicting gain 
in mass selection, can be constructed only by the variance components 
method. 
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