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Abstract
Climate change creates unprecedented challenges for 
seedling production and reforestation. Developing new 
tools is necessary to understand seedling physiology 
and phenology under novel environmental conditions. A 
process-oriented cold hardiness model that can accurately 
predict daily cold hardiness is a tool that can inform 
nursery cultural decisions, planting, and seed source 
selection, especially in cases of assisted migration. This 
model can provide daily estimates of cold hardiness status 
and biologically interpretable parameters that reveal 
population-specific characteristics with low error and high 
efficiency. This paper was presented at Growing Pains: 
Scaling up the Reforestation Pipeline—Joint Annual 
Meeting of the Western Forest and Conservation Nursery 
Association and the Forest Nursery Association of British 
Columbia (Portland, OR, September 19–21, 2023).

Introduction
The future success of seedling production and reforestation 
faces many challenges. An overarching theme to these 
challenges is the impacts of climate change and modern 
forest management practices. These factors disrupt the 
natural cycles of plants that have evolved over millennia. 
One such cycle is plant phenology, the timing of recurring 
life events that are commonly associated with seasonal 
changes such as budburst in spring, flowering and fruiting 
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in summer, and leaf senescence in fall. Phenology has 
been observed and recorded for much of recent history, 
with cherry blossom records dating back to the 800s (Piao 
et al. 2019). Growing degree days (GDD) may be the 
first occurrence of phenological modeling, originating 
in the 1700s, and is still commonly used by growers, 
agronomists, entomologists, and pathologists (Piao et 
al. 2019). The concept of GDD can be thought of as a 
type of “thermal time” and is still applied to nursery crop 
production and reforestation (Bradford 2002, Ferguson et 
al. 2011, Kaya et al. 2021). 

Tracking thermal time in GDD and chill hours is common in 
nurseries. These empirical methods are based on historical 
research and serve as a guide for growers. This practice has 
sufficed for many decades across many different production 
systems, but the future, under climate change, will demand 
a more thorough understanding of seedling phenology 
and physiological mechanisms to create tools capable of 
mitigating unprecedented challenges. 

In addition to climate change, increasing seedling demand 
due to postwildfire reforestation efforts also creates 
challenges in seedling production and regeneration. On 
Federal land in the United States, forest loss to wildfires 
in recent decades has resulted in a backlog of reforestation 
demand. The 2021 Repairing Existing Public Land by 
Adding Necessary Trees (REPLANT) Act aims to reforest 
1.2 billion trees in response to this backlog (Stabenow 
2021). This heavy demand pressure for seedlings strains 
nursery production, challenges infrastructure capacity, 
and disrupts typical growing and planting practices, all 
of which create novel risks to seedling cold hardiness 
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(Fargione et al. 2021, Grossnickle and MacDonald 2021). 
In response to climate change, assisted migration (seed 
source movement) is likely to soon become the standard in 
reforestation. Though the intention is moving populations 
or species to new regions where they are better adapted, 
assisted migration creates the risk of maladaptation, 
or a mismatch between evolved traits and the local 
environment (Malmqvist et al. 2018). Understanding 
how populations will handle future heat and drought and 
how they will tolerate current environments, including 
cold weather extremes, will be important to prevent 
maladaptation and ensure reforestation success. 

Cold hardiness is a phenological characteristic of plants 
that is driven in part by temperature and is thus susceptible 
to effects of climate change. Cold hardiness—the ability of 
a plant tissue to survive low temperature exposure—can be 
characterized into three phases during the dormant season 
of temperate woody plants (Bigras et al. 2001). First, 
acclimation occurs during fall into winter when plants 
gradually become cold hardier. Second, peak hardiness 
(or maximum hardiness) occurs during winter and is when 
plants show the greatest resistance to cold stress. Third, 
deacclimation occurs when plants rapidly and irreversibly 
lose cold hardiness and progress toward budburst and 
vegetative growth resumption. Though the phenology of 
cold hardiness and dormancy overlap, and both respond to 
temperature, they occur via separate mechanisms within 
plant tissues and follow different seasonal patterns. 

Dormancy phenology also progresses through a series 
of stages driven by environmental conditions. In conifer 
seedlings, drought-induced dormancy may occur in 
summer or early fall. At this stage, the plant is in a state 
of ecodormancy, also called quiescence (Haase 2011), 
and dormancy can be released (i.e., growth can resume) 
if the environment becomes favorable. A species-specific 
combination of photoperiod and chilling temperatures 
contributes to the progression into endodormancy in the 
late fall and early winter, which cannot be released by 
environmental conditions directly but is controlled by 
internal physiology (Lang et al. 1987). This physiological 
dormancy must be released through the accumulation of 
chilling temperature exposure (i.e., a chilling requirement). 
When chilling requirements have been met, endodormancy 
progresses into ecodormancy during which forcing 
temperatures contribute to budburst and cold hardiness 
deacclimation (Bailey and Harrington 2006), which are 
highly correlated throughout late winter into spring (Aitken 
and Adams 1997). 

Mismatched phenology (when plant response and 
environmental cues become asynchronous) can impact 
seedling success, especially in terms of growth and 

hardiness. Temperature changes related to climate change 
have modified the timing and duration of phenological 
stages during dormancy, with reductions in chilling being 
the most important driver across temperate tree species 
(Ettinger et al. 2020). Accumulation of chilling temperatures 
is important to release endodormancy, control the efficacy 
of forcing temperatures for budburst, and regulate the rate of 
cold hardiness deacclimation (Bigras et al. 2001, Harrington 
and Gould 2015). Seasonality is predicted to change more 
in the future with longer summers and shorter winters, 
springs, and autumns. These changes will further disrupt 
dormancy phenology and reduce chilling accumulation 
(Wang et al. 2021). As budburst and shoot elongation occur, 
woody plants are the least cold hardy. Thus, a mismatch 
in the timing of budburst and seasonal climate can result 
in negative outcomes such as increased cold damage 
due to early deacclimation (Arora and Taulavuori 2016, 
Wisniewski et al. 2018) or delayed budburst due to lower 
exposure to chilling (Ettinger et al. 2020, Hsu et al. 2023). 
Climate change in the Pacific Northwest is anticipated 
to result in increases in precipitation as rain rather than 
snow (Mote et al. 2016). This change can affect seedling 
production systems. For example, the seedling lifting 
window will shift due to soil saturation, early warming, and 
late freezes, resulting in catastrophic damage to nursery 
crops or planted seedlings. 

Empirical methods, like GDD, are likely to be inadequate 
in the future when environmental conditions fall outside 
of historical observations. However, models based on 
the understanding of biological processes can be more 
effective when applied to novel conditions, such as those 
caused by climate change (Cuddington et al. 2013). 
Fortunately, seedling production and reforestation efforts 
can be improved through implementing new technologies. 
New computing abilities and data collection techniques 
allow for the increased use of modeling tools in nursery 
production and reforestation practices (MacKenzie and 
Mahony 2021, Pasala and Pandey 2020). 

This article describes a process-oriented cold hardiness 
model trained and tested with historical published 
Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) data. 
This example is meant to demonstrate how a model can be 
used for daily, real-time predictions of phenology status. 
This case uses cold hardiness in units of estimated lethal 
temperature to 50 percent of a population (LT50). Applied 
use of this model to provide predictions on a daily time 
scale can be useful in frost protection decision making and 
characterization of specific seed lots. Real-time knowledge 
of seed lot hardiness status can be used to inform decisions 
about culturing, lifting, storage requirements, planting 
timing, and planting site. 
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Methods
Cold hardiness observational data were extracted from 
published literature. Criteria for data selection were the 
inclusion of multiple dates of cold hardiness observations 
for a seed source replicated over one or more dormancy 
seasons. Of the data sources reviewed, only one had 
multiple seasons of cold hardiness data for two seed 
sources (Timmis et al. 1994). Data were extracted from 
three additional data sources, which are described in a 
separate publication (Stuke et al. 2024). Data extraction 
from figures was performed with the ImageJ ‘Figure 
Calibration’ plugin (Miller 2011, Schneider et al. 2012). 
Cold hardiness from second-year bareroot Douglas-fir 
seedlings grown in Olympia, WA, was determined using 
artificial freeze tests and calculation of the LT50 based on 
visual damage expression (Timmis et al. 1994). Daily 
minimum and maximum temperatures for the closest 
weather station were acquired from climate data online 
(NOAA 2022) from October 1 through May 1 and included 
three dormancy seasons (starting in October 1974, 1976, 
and 1977). For the two seed sources tested (table 1), 
elevation was estimated based on the coordinates of the 
collection site (USGS 2022). Seed sources were identified 
as high and low elevation, and both were tested during all 
three full dormancy seasons. 

features for many species, such as the use of daily average 
temperature for cold hardiness prediction, testing with 
many years of climate data from a broad geographic range, 
biologically interpretable parameters, inclusion of chilling 
and forcing temperature accumulation requirements, and 
parameters specific to the acclimation and deacclimation 
periods of cold hardiness phenology. These aspects make 
the model a strong candidate for use in tree seedling 
operational decisions. 

This cold hardiness model uses a set of biologically 
interpretable parameters for each seed source tested (table 
2). Parameters specific to each seed source are determined 
using an automated model calibration process built into 
Cropbox: a declarative crop modeling framework (Yun 
and Kim 2023). To prevent overfitting, 70 percent of data 
points from each seed lot were randomly selected as a 
training dataset (used for calibration) and the remaining 30 
percent were used as a testing dataset for model validation. 

The general operation of the model is that chilling units 
are accumulated until the chilling requirement is met. 
Thereafter, forcing units are accumulated until the upper 
limit of cold hardiness is met or the end of the modeling 

Table 2. Parameters and variables used in the cold 
hardiness model

Symbol Description Range

DD
c

Chilling degree-days

DD
f

Forcing degree-days

H
c

Cold hardiness -40 to 0 °C (-40 to 
32 °F)

H
c,ll

Lower limit cold hardiness 
temperature

-25 to -15 °C (-13 
to 5 °F)

H
c,ul

Upper limit cold hardiness 
temperature

-5 to 0 °C (23 to 
32 °F)

H
c,0

initial cold hardiness value -7 to 0 °C (19.4 to 
32 °F)

T
th,a

Threshold temperature of 
acclimation

0 to 10 °C (32 to 
50 °F)

T
th,d

Threshold temperature of 
deacclimation

0 to 15 °C (32 to 
50 °F)

k
a

Acclimation rate 0 to 1

k
d

Deacclimation rate 0 to 1

R
f

Forcing requirement 100 to 500 DD
f

R
c

Chilling requirement -500 to -100 DD
c

Adapted from Ferguson et al. (2011, 2014). Manually input 
range limits, based on biological assumptions, are included 
for model parameters.

Table 1. Modeling Data

Seed 
source 
ID

No. of 
data 
points

Seed 
source lat. 
(°N)

Seed 
source 
long. (°W)

Seed source 
elevation (m)

High 29 46.11 122.54 630 (2,067 ft)

Low 24 46.93 123.81 100 (328 ft)

The data set consists of 53 data points from 2 seed 
sources, both grown at the same nursery site in Olympia, 
WA, (46.9° N, 123.08° W) over a series of 3 dormancy 
seasons in the 1970s (1974–1975; 1976–1977: 1977–1978).  

Modeling
The model used in this project was modified from a grape 
(Vitis spp.) cold hardiness extension testing program 
(Ferguson et al. 2011, 2014). This model was selected 
because it is used for real-time predictions of cold 
hardiness for dozens of grape cultivars and only requires 
daily minimum and maximum temperature as the input 
variables. The model has reliably predicted grape bud 
cold hardiness across many cultivars over many years 
(Ferguson et al. 2014). Though grapes and conifers 
differ in many ways, the model has several applicable 
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period is reached, whichever occurs first (figure 1). A 
series of equations determines the daily change in cold 
hardiness based on daily temperature inputs (figure 
2), which can estimate LT50 daily. Model performance 
was determined using goodness of fit metrics, which 
compare model predictions with observed LT50 values. 
The model’s equations and assumptions are published in 
Stuke et al. (2024). 

Results 
The parameters used in the model (table 2) result in 
different responses for the different seed lots produced at 
the same time and location. Estimates for the high- and 
low-elevation seed lots have some notable differences 
(table 3). The parameters have easily interpretable 
meanings and can reveal characteristics about how 
different populations respond to certain climate conditions. 
For example, the high seed lot had a lower temperature 
threshold for deacclimation and a lower chilling 
requirement compared with the low seed lot (table 3). 
This difference suggests that the high seed lot is very 
sensitive to warming and may be more vulnerable to early 
deacclimation, which may create issues when producing 
this seed lot in warmer regions or in cases of early 
warming, especially if late frost occurs. 

The two seed sources primarily differed in the shoulder 
seasons (fall and spring), with the low seed source 
acclimating and deacclimating later than the high seed 
source (figure 3). The model fits the general pattern of 
cold hardiness observational data, but in the 1976–1977 
and 1977–1978 dormancy seasons, peak cold hardiness 
estimates did not achieve low enough LT50 values. This 

Figure 1. The model described in this paper operates 
by accumulating chilling during acclimation and forcing 
during deacclimation after a chilling requirement is met. 

Figure 2. The model used here functions on daily 
temperature inputs and produces estimates of cold 
hardiness, which can be specific to populations based 
on parameter values selected during the model training 
process. The model operates on a daily time interval, so 
that estimates of cold hardiness can be updated after 
weather data from the previous day are available. This 
input method also allows the opportunity for predictions 
of future cold hardiness by using historical averages to 
project weather patterns. 

Table 3. Parameter estimates for high and low seed 
sources

Parameter High Low

T
th,a

7.3 °C (45 °F) 7.9 °C (46 °F)

T
th,d

0.07 °C (32 °F) 1.3 °C (34 °F)

R
c

-338 DD
c

-788 DD
c

R
f

173 DD
f

422 DD
f

H
c,ll

-24 °C (-11 °F) -24 °C (-11 °F)

H
c,ul

-0.6 °C (33 °F) -3.8 °C (25 °F)

H
c,0

-5.6 °C (22 °F) -4.7 °C (24 °F)

k
a

0.7 0.5

k
d

0.09 0.1

Parameter estimates from Timmis et al. (1994) indicate 
phenological differences in the high and low seed sources. 
Biologically meaningful differences are bolded and include 
chilling requirement (R

c
) and the temperature threshold for 

deaclimation (T
th,d

). Parameters were determined during 
model training using 70 percent of datapoints for each 
seed source. Parameter definitions are listed in table 2. 
Chilling degree days are given in negative values.
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Figure 3. Model fits are shown here by lines, and 
observed cold hardiness is indicated by points. The 
difference between an observation and the modeled 
value at any timestep indicates a model residual, which 
can be used to calculate error. Training data are used 
for model calibration and testing data are used for 
model evaluation. Training data included 70 percent of 
data points and testing data included the remaining 30 
percent. This separation reduces bias and the likelihood 
of overfitting. 

result may be attributed to a minimum limit of -25 °C (-13 
°F) assigned to Hc,ll parameter fitting, which should be a 
consideration for adjustment in future model runs (Stuke et 
al. 2024).

Model residuals (figure 4) and goodness of fit statistics 
(table 4) demonstrate quantitatively how the model 
performed. For this dataset, the model had a good fit, with 
a slightly better fit for the low seed source than for the high 

Table 4. Model validation statistics for high and low 
seed sources

Statistic High Low Combined

MAE 2.43 1.67 2.0

RMSE 2.7 2.03 2.35

d 0.91 0.97 0.95

n 7 9 16

Model validation statistics summarizing goodness of fit 
using model residuals for the Timmis et al. (1994) data 
demonstrate good model fits for both seed sources but 
a better fit for the low seed source. Seed sources were 
modeled separately, and statistics are provided for each 
seed source, including mean absolute error (MAE; the 
average of the absolute values of model residuals), root-
mean-square error (RMSE; the magnitude of error), index of 
agreement (d; an indicator of model efficiency on a scale of 
-1 to 1), and number of data points (n) for each seed source.

seed source. This difference may be due to the low seed 
source having more data points, which may have improved 
the model calibration process. The regression of residuals 
shows that the model performed very close to the 1:1 line 
(figure 4) with a slope of 0.95, where a slope of 1.0 and 
complete overlap with the 1:1 line would indicate a perfect 
fit. Root-mean-square error (RMSE, the average difference 
between the model’s predicted values and the actual 
values) ranges from 2.03 to 2.7 °C (35.66 to 36.86 °F), 
which demonstrates how accurate the model is on average. 
Modifying the parameter range for the lower limit of cold 
hardiness to include the low temperature LT50 in 1976 and 
1977 may reduce the RMSE, since these are the largest 
error sources in the model fit. 

Figure 4. The relationship between observed and 
predicted cold hardiness values shows low error, 
indicating good model performance. Points show model 
residuals (observed and predicted value for each data 
point). Dotted lines show a 1:1 relationship between 
observations and predictions and the solid line shows the 
linear regression between observations and predictions. 
The linear regression equation, root-mean-square error 
(RMSE), R2 (the coefficient of determination), and Nash–
Sutcliffe model efficiency (NSE) for each scenario are 
listed in the plot. Only datapoints from the testing subset 
are shown (30 percent of all datapoints).
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Discussion 
Knowing the daily estimated cold hardiness for seedlings 
in production can be valuable in determining minimum 
requirements for frost protection. Though it is a critical 
component of cold damage prevention in the nursery, 
irrigation-based frost protection of bareroot and outdoor 
grown container stock can have many disadvantages. 
Irrigation-based frost protection works by applying 
water to seedlings during cold weather events to provide 
insulation in the form of ice and warming by latent heat 
through the exothermic reaction that occurs when water 
freezes (Rose and Haase 1996). The physical weight of 
ice can cause mechanical damage to seedlings, reducing 
overall yield. Application of irrigation can oversaturate 
soils creating standing water and exclude equipment from 
accessing bareroot seedlings, thereby delaying lifting 
(figure 5). Lifting can also be delayed in container crops 
that are frost protected if blocks remain frozen. Nutrients 
can be lost through leaching of soil or soilless media 
and directly from foliage. Irrigation equipment can be 
damaged if pipes freeze during frost protection (figure 
5). Additionally, frost protection can reduce chilling 
accumulation if seedling temperature is not kept below the 
threshold of physiologically active chilling temperatures. 
Though knowing cold hardiness status is key to making 
frost protection decisions, accurate temperature monitoring 
and site-specific weather predictions across nursery zones 
are critical. 

In addition to the daily estimated LT50, the calibrated 
model can be used to characterize and rank different 
plant populations 
by their sensitivity 
to specific weather 
conditions. For example, 
a comparison between 
chilling requirements and 
deacclimation rates can be 
used to determine which 
populations are more likely 
to deacclimate earlier 
during warming events 
(table 3). This knowledge 
can be used to prioritize 
interventions and select 
appropriate populations for 
reforestation, especially in 
cases of assisted migration. 
Knowing the status of 
chilling requirement in 
relation to accumulated 
chilling can also be 

helpful in determining if additional storage is required to 
artificially induce hardening (Omi et al. 1991). 

This model currently runs on calendar date and does 
not include a photoperiod component. For Douglas-fir 
seedlings that do not experience photoperiod manipulation 
(i.e., blackout or artificial lighting), natural daylength is 
minimally impactful on cold hardiness acclimation and 
deacclimation (Stuke et al. 2024). For nursery operations 
using blackout to induce budset, consideration of when to 
start the modeling period is important. The rapid change 
of photoperiod that blackout induces can trigger a stress 
response in seedlings that alters natural phenology and 
may have unique cellular and physiological consequences 
(Wallin et al. 2017). The impact of blackout on cold 
hardiness phenology is an area that requires more research 
to adequately model. 

Seedling production and reforestation is critical to 
establishing forests that will grow into the future. 
Fargione et al. (2021) estimated that the economics to 
establish 26 million hectares (64.25 million acres) in the 
contiguous United States vary widely but could be $33 
billion or higher during the next 15 years, depending on 
planting targets and capacities (Fargione et al. 2021). 
The REPLANT Act further demonstrates investment in 
reforestation through the allocation of $123 million in 
Federal funds annually (Stabenow 2021). If phenological 
issues affect seedling survival on even a fraction of 
reforested acreage, large costs will occur. The impact of 
cold damage on seedlings is likely underestimated because 
of the delay in expression of visual damage. Cold damage 

Figure 5. ice accumulates over bareroot seedlings due to irrigation-based frost protection 
(left). Though this practice is necessary to protect vulnerable seedlings, it can have many 
negative impacts as well, such as ice formation on irrigation equipment (right). Accurate 
estimation of cold hardiness can help in frost protection decision making. Photos courtesy 
of Washington Department of Natural Resources, Webster Nursery, Olympia, WA.
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decreases seedling quality and increases disease even in 
nonlethal cases (Reich and Kamp 1993). 

As the demands of reforestation and assisted migration 
place extra pressure on seedling production systems and 
forest regeneration, and climate change creates atypical 
weather patterns and extremes, understanding and 
predicting seedling responses to unprecedented seasonal 
conditions will be more important than ever. This model 
integrates seedling phenology and physiology in a seedling 
production context to guide future planting and population 
selection for reforestation. 

Conclusion
Though the model described in this article is not yet 
ready for nursery and reforestation operations without 
parameterization for specific populations, it provides 
the foundation for a tool that can be further developed 
with additional data. Modern modeling resources cannot 
replace intuitive and experienced growers and foresters, 
but they can be leveraged to assist in decision making and 
risk prevention. These tools will be critical for nursery 
production and forest regeneration as novel difficulties and 
unprecedented weather extremes increase in frequency due 
to climate change. Building strong collaborations among 
nurseries, foresters, and researchers will be crucial to 
overcome future demands and challenges.
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Miro Stuke, 3501 NE 41st St, Seattle, WA 98105; email: 
stuke@uw.edu.
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