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Abstract

Sugar maple (Acer saccharum Marsh.) is a shade-tolerant 
hardwood tree native to forests across eastern North 
America. Genetic diversity of this species is high 
due to high levels of seed dispersal and pollen flow. 
Population structure is moderate along range edges 
where populations are isolated and gene flow may be 
limited. Sugar maple may hybridize with southern 
maple (A. floridanum [Chapm.] Pax), but hybridization 
events are considered rare. Common garden studies 
revealed relatively weak clines for growth traits and 
strong variation in phenological traits, although few 
common gardens exist. Seed transfer distances up to 
200 mi (322 km), or roughly 2 degrees latitude north-
ward, are considered a safe recommendation to avoid 
phenological mismatches. Widespread decline reported 
in New England and the Lake States has been at-
tributed to insects and diseases on mature trees. Pear 
thrips, defoliators, Eutypella, and Armillaria fungi may 
impact seedlings and mature trees. Sugar maple is 
likely to expand northward with climate change, but 
southern populations may be subject to inbreeding 
from increased isolation among discontinuous stands. 

Introduction

Sugar maple (Acer saccharum Marsh.) is a  
late-successional, shade-tolerant (Canham 1988), 
broad-leaved tree species, native to the United States 
and Canada. The bark is dark gray and exhibits 
different morphotypes ranging from flat plates, to 
raised shells, to elongated protrusions (Sajdak 1968). 
The species is renown for its colorful fall foliage that 
can vary from yellow to red (figure 1). Sugar maple 
occurs across eastern North America with disjunct 
populations in the tropics, occurring at high eleva-
tions as far south as Guatemala (Vargas-Rodriguez 
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Figure 1. Maple leaves vary from yellow to orange in the fall, creating a patch-
work of colors that is a major attraction to tourists across the Northern United 
States. (Photo by Carolyn Pike, 2021) 
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et al. 2015). Sugar maple is believed to have had 
one southern glacial refugium that spread north and 
westward at the end of the last ice age (Miller and 
Parker 2009). A study that incorporated disjunct 
sugar maple populations, however, found that mul-
tiple glacial refugia may better explain the current 
geographic range in temperate and tropical forests 
(Vargas-Rodriguez et al. 2015). 

Sugar maple has a broad ecological amplitude and 
can grow in northern hardwood (figure 2) and south-
ern boreal forests on a variety of soil types and sub-
strates (Barras and Kellman 1998) but grows best on 
well-drained loams (Godman et al. 1990). The species 
has high shade tolerance and is sympatric with bass-
wood (Tilia americana L.), American beech (Fagus 
grandifolia Ehrh.), yellow birch (Betula alleghaniensis 
Britton), and black cherry (Prunus serotina Ehrh.). 

In addition, its roots exude a leachate that has some 
allelopathic properties that may enhance its com-
petitive ability in northern hardwood forests (Tubbs 
1973). Sugar maple regeneration is most common 
from seed, which can successfully establish on a 
wide range of substrates, such as rotten wood, bare 
soil, and leaf litter (Caspersen and Saprunoff 2005). 
Artificial regeneration is relatively uncommon 
because of the species’ propensity to regenerate 
naturally in the understory (figure 3).

Sugar maple is projected to adapt well to climate 
change because of its shade tolerance; ability to 
shift northward; plasticity (Peters et al. 2020, Prasad 
et al. 2020); and capacity to inhabit a wider climatic 
range than it currently occupies (Putnam and Re-
ich 2017). Populations within the current southern 
range of sugar maple have not yet shown evidence 

Figure 2. This mature stand of sugar maple in Wisconsin was recently thinned to allow light to reach the forest floor. (Photo by Christel Kern, USDA Forest Service, 2021)
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Figure 3. Sugar maple is highly shade-tolerant and regenerates readily in full and partial shade of the understory. (Photo by Carolyn Pike, 2021)

of range contraction (Hart et al. 2014). Optimum tem-
peratures for sugar maple germination may be higher 
than current norms, so the species should not be limited 
by germination temperature in the future (McCarragher 
et al. 2011). Wide-ranging dendrochronological studies 
failed to correlate radial growth with any single climate 
factor and concluded that the species is highly plastic, 
which bodes well for its ability to adapt to novel 
climates (Copenheaver et al. 2020).

Sugar production from sugar maple trees (figure 4) 
is, and has always been, a major food source for 
tribes (Chamberlain 1891) and an important com-
modity to rural economies across the species’ range. 
Sugar production is likely to be impacted by climate 
change, leading to concerns about the sustainabili-
ty of this resource (Oswald et al. 2018, Rapp et al. 
2020). The zone of optimum production may shift 
north from the 43rd to the 45th parallel (Rapp et al. 

2020), or syrup yield may remain relatively stable 
across a broad latitudinal and temperature gradient 
(Houle and Duchesne 2020). Researchers agree that 
the annual sap-collection season will begin and end 
earlier due to earlier freeze/thaw cycles (Rapp et 
al. 2020, Skinner et al. 2010). More information on 
this taxon can be found in Godman et al. (1990) and 
Nesom and Moore (2006).

Genetics

Sugar maple, a monoecious diploid (Kriebel 1957), 
is self-compatible, although selfing rarely produc-
es viable seed (Gabriel 1967). Pollen, shed in the 
spring, is both wind- and insect-dispersed (Gabriel 
and Garrett 1984) and capable of long-distance 
dispersal (Khodwekar et al. 2015). The species is also 
highly dichogamic with male and female organs ma-
turing at different time intervals: on some trees, males 
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mature before females (protandry), while on other 
trees, females mature before males (protogyny) (Ga-
briel 1968). This flowering asynchrony among trees 
within a stand may lower local gene flow or genetic 
diversity since not all combinations of outcrosses are 
likely (Gabriel 1968). Seeds are medium-sized double 
samaras, averaging 15,540 seeds per lb (7,030 per 
kg) and are dispersed in the fall (Zasada and Strong 
2008). Usually, only one of the paired samaras con-
tains a viable seed (Godman et al. 1990). 

The taxonomy of sugar maple is not yet settled. 
Black maple (Acer nigrum F. Michx.), the closest 
relative to sugar maple (Jackson et al. 2020), is 
sometimes considered a subspecies (Acer saccharum 
ssp. nigrum) and may hybridize with sugar maple in 
the Central United States where their ranges over-
lap (Gabriel 1973, Skepner and Krane 1998). Flor-
ida maple (Acer floridanum [Chapm.] Pax or Acer 
barbatum Mich.), also known as southern maple, 
has relatively disjunct populations and is sometimes 
considered a subspecies (Acer saccharum var. florida-

num [Chapm.] Small & A. Heller). Kriebel (1975) rec-
ognized sugar maple as a single species with multiple 
forms—saccharum, nigrum, and floridanum—which 
correspond to the species A. saccharum, A. nigrum, 
and A. floridanum. Despite its complicated taxonomy, 
hybridization of sugar maple with black maple or 
Florida maple is not known to widely occur.

The amount of genetic diversity and gene flow var-
ies across the geographic range of sugar maple. Low 
to moderate genetic diversity is reported in tropical 
populations where stands are disjunct and isolated 
(Vargas-Rodriguez et al. 2015). Where sugar maple 
stands are contiguous, genetic diversity is high and 
rare alleles are uncommon (Foré et al. 1992, Foré 
and Hickey 1992, Graignic et al. 2016, Gunter et 
al. 2000, Khodwekar et al. 2015). Genetic diversity 
of southern populations in eastern Tennessee may 
exceed northern populations in Wisconsin (Gunter 
et al. 2000) due to the presence of rare alleles in the 
southern populations. Because sugar maple popu-
lations along the southern range edge are relatively 
isolated, rare alleles that evolve are not as readily 
dispersed to other populations. This low dispersal 
results in inflated estimates of genetic diversity, 
which may be an artifact of reduced gene flow or 
prior hybridization with A. floridanum or A. nigrum. 

Across most of its range, even where populations are 
relatively continuous, moderate levels of spatial genetic 
structure have been reported for sugar maple, likely 
from occasional inbreeding and limited seed dispersal 
(Geburek 1993; Geburek and Knowles 1992; Perry 
and Knowles 1988, 1991; Young et al. 1993). Sugar 
maple’s opportunistic nature may also explain this 
phenomenon. Sugar maple proliferates in the understo-
ry of uneven-aged stands resulting in cohorts that are 
uniquely positioned to take advantage of light gaps or 
other resource pulses. These cohorts contribute seeds 
during years when gaps or other favorable conditions 
are randomly created, resulting in their dispropor-
tionate representation. These synchronous cohorts are 
shaped by a combination of random events and natural 
selection (Mulcahy 1975). 

Seed-Transfer Considerations

Sugar maple growth traits such as height, stem diam-
eter, and leaf tannin content generally exhibit weak 
clinal (provenance) variation, as observed in both 
common gardens (Baldwin et al. 1987) and natural 

Figure 4. Maple syrup is a major industry for residents of northern States and an 
important food source for tribes. In this image, a maple tap is testing for sugar 
content, in the early spring at a sugar maple forest in Michigan. (Photo by Paul 
Bloese, 2014)
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stands (Gunter et al. 2000). Conversely, phenological 
traits often follow predictable geographic patterns. 
For example, timing of fall coloration exhibited 
strong latitudinal trends, with sources from northern 
latitudes (from cooler climates) exhibiting color-
ation earlier than southern sources (from warmer 
climates). Similarly, northern sources tend to leaf out 
earlier in the spring and senesce earlier in the fall than 
southern sources (Kriebel 1957, Kriebel and Wang 
1962, Putnam and Reich 2017, Ren et al. 2020). In 
common garden studies, sugar maple trees originat-
ing from northerly regions (relative to a common 
garden) are prone to damage from early spring 
frosts, while trees from southerly sources are more 
prone to damage from fall frosts (Kriebel 1975). 
Drought resistance is generally higher in sugar ma-
ple trees that originate from dry climates relative to 
seed sources from cool, moist climates. Sun scorch and 
leaf injury following extreme summer heat were more 
severe on northern genotypes than southern genotypes 
in a common garden trial (Kriebel 1975). Sun scorch 
also exhibited east-west clines in which sources from 
Ohio had more leaf damage than sources from Illinois.

Kriebel (1975) defined three ecotypes of sugar ma-
ple corresponding to northern, central, and southern 
populations based on a variety of phenological traits 
(table 1). For these reasons, Kriebel (1975) defined a 
local seed source as one that originated within 100 mi 
(161 km) from the planting site. No other studies have 
assessed sugar maple seed-transfer distances empirical-
ly, so this recommendation may not apply to other parts 
of its range. Given that sugar maple is likely to expand 
its range northward with climate change (Caspersen 
and Saprunoff 2005) and is highly plastic (Guo et al. 
2020), it is likely tolerant to seed-transfer distance up 
to 200 mi (322 km) in the Northern United States. Seed 
transfer guidelines are summarized in Table 2. 

Insect and Diseases

Insects and diseases that impact growth and survival 
of mature sugar maple have been extensively studied, 
especially across New England. Defoliators are the 
most common insects that affect sugar maple, including 
native species such as forest tent caterpillar (Malaco-
soma disstria Hbn.) (Gross 1991), which affects sugar 
maple in New England and, to a lesser degree, across 
the Lake States (Minnesota and Wisconsin). The Bruce 
spanworm (Operophtora bruceata [Hulst]) and saddled 
prominent (Heterocampa guttivitta [Walker]), both 
native caterpillars, also feed on sugar maple (Houston 
et al. 1990). Pear thrips (Taeniothrips inconsequens 
[Uzel]) (Gardescu 2003) is the most important 
nonnative defoliator of sugar maple as its feeding 
can also introduce anthracnose fungi (Discula camp-
estris [Pass.] Arx) (Brownbridge et al. 1999, Stanosz 
1993). Sugar maple is not considered a primary host 
for the nonnative spongy moth (formerly gypsy moth) 
(Lymantria dispar L.) (Barbosa and Greenblatt 1979). 
Seedlings may also be defoliated by caterpillars in 
the Tortricidae including (Clepsis melaleucana Walker) 
(a native generalist caterpillar) and by European slugs 
(Arion subfuscus Draparnaud). Herbivory from a 

Table 1. A summary of traits for major subgroups of sugar maple based on 
Kriebel (1957).

Sugar 
maple  

population
Drought 

resistance

Susceptibility 
to leaf damage 
during summer

Cold  
resistance

Apical 
dominance

Northern low high high strong

Central high moderate high strong

Southern high high low weak

Table 2. Summary of silvics, biology, and transfer considerations for sugar maple.

Sugar maple, Acer saccharum (Marsh.)

Genetics

• Genetic diversity: high

• Gene flow (pollen): high

• Gene flow (seed): moderate to high

Cone and seed traits
• Medium-sized, winged seeds

• 7,070 to 20,110 cleaned seeds per pound (3,200 to 
9,100 per kg) 

Insect and disease
• Forest tent caterpillar, pear thrips, sugar maple 

borer, and Asian longhorned beetle 

• Armillaria, anthracnose, and Eutypella canker 

Palatability to browse • Moderately palatable to deer browse

Maximum transfer 
distances

• Seed-transfer distances have not been tested across 
its range

• Based on common garden studies, 100 to 200 
mi (161 to 322 km) is the longest recommended 
seed-transfer distance

Range-expansion 
potential

• Northward potential is high

• No evidence of southern range-edge contraction

• Southern range-edge populations may become 
more disjunct and isolated 



26     Tree Planters’ Notes

variety of other insects such as leafhoppers (Typhlo-
cyba spp.) was reported as well (Gardescu 2003). 
Sugar maple borer (Glycobius speciosus [Say]) 
significantly impacts wood quality on mature trees 
with low vigor, especially after defoliation events 
(Wink and Allen 2003). Sugar maple is a preferred 
host of Asian longhorned beetle (Anoplophora 
glabripennis Motschulsky), a large beetle native to 
Asia that travels on firewood and on pallets used for 
international shipping (APHIS 2022). 

Mature trees and seedlings can be impacted by 
native Armillaria calvescens Bérubé & Dessureault 
(Bauce and Allen 1992), anthracnose (Glomerella 
cingulate (Stoneman) Spauld. & H. Schrenk), and 
leaf spot fungi such as Cristulariella depraedans 
(Cooke) Hohn (Gardescu 2003). Cankers caused by 
Eutypella parasitica Davidson and Lorenz usually 
occur on the lower bole (Kessler and Hatfield 1972, 
Kliejunas and Kuntz 1974). Other factors contribut-
ing to decline episodes in sugar maple stands in-
clude drought coupled with prior defoliation events 
(Horsley et al. 2002, Payette et al. 1996), climatic 
factors (Bauce and Allen 1991), and nutrient stress 
in New England (Bal et al. 2015) and Pennsylvania 
(Bailey et al. 2004). 
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