Weed Management in Southern Bareroot Hardwood Nurseries
David B. South
Emeritus Professor, School of Forestry and Wildlife Sciences, Auburn University, AL

Abstract
Nursery managers in the Southern United States rely on chemical and nonchemical methods of weed control. Chemical treatments include fumigation with methyl bromide and chloropicrin in combination with selective herbicides. At nurseries where methyl bromide is not used, managers rely on herbicides and sanitation practices. Although several herbicides are registered for use on hardwoods, some formulations can injure seedlings if improperly applied to seedbeds. Most grasses can be effectively controlled with selective herbicides and many small-seeded broadleaf weeds can be suppressed when preemergence herbicides are applied before germination of weeds. Several preemergence herbicides may be legally applied either at time of sowing or after seedlings are established. Several nursery managers have fabricated shielded herbicide sprayers to apply herbicides between drills to certain difficult-to-control weeds. The most effective integrated weed management programs include rigorous sanitation practices and judicious use of efficacious herbicides.

Introduction
The hardwood nursery manager’s primary objective is to produce morphologically improved stock as economically as possible. Morphologically improved hardwood seedlings have a minimum root-collar diameter of 10 mm, are grown at low seedbed densities, have a higher probability of survival, have a higher root-weight ratio (root dry weight/seedling dry weight) often due to top-pruning, and have a greater root growth potential than smaller stock. The presence of weeds can be a major obstacle to this goal because they compete with seedlings for light, water, and nutrients. In addition, handweeder often pull up seedlings while weeding, reducing revenue from seedling sales. In some cases, weed populations will stunt seedlings and will cause large variations in seedling size at lifting.

To maintain a relatively weed-free nursery, most hardwood nursery managers implement a comprehensive, year-round weed control program. In the past, some seedbeds required more than 3,800 hours of handweeding per hectare (Abrahamson 1987). Today, many managers use an integrated weed management (IWM) program (Walker and Buchanan 1982), which includes sanitation, soil fumigation, and herbicide applications to keep weed populations low and minimize handweeding. As a result, several hardwood nurseries now require less than 60 hours of handweeding per hectare.

Weed Identification
To achieve good weed control, weed species must be accurately identified, especially when troublesome species are present. For example, some herbicides will suppress yellow nutsedge (Cyperus esculentus L.) but have little effect on purple nutsedge (Cyperus rotundus L.), even though the two species appear similar. Several online sites are available for identifying common weeds, and extension weed specialists should be able to identify rare species. Some of the more common weeds in southern nurseries, with their scientific names, are listed in table 1.

Sanitation
Preventing weeds from going to seed in the nursery is an important sanitation practice because weed populations in future years greatly depend on the number of seed produced during the current season. If one yellow nutsedge plant is allowed to mature, it can produce more than 2,400 seeds. A mature purslane plant (Portulaca oleracea L.) can produce more than 52,000 seeds and a single redroot pigweed (Amaranthus retroflexus L.) can produce 117,000 seeds or more (Stevens 1932). The importance of preventing a single weed from maturing and producing seed in the nursery cannot be overemphasized. A severe infestation of nutsedge can quickly result from the failure to control even a single plant. For example, one tuber of purple nutsedge produced 1,168 plants and 2,324 tubers after 6 months (Ishii et al. 1971). Weeds must be prevented from going to seed not only in the seedbeds, but also on the riserlines, fencerows, cover-crop areas, and fallow areas (Wichman 1982).
Irrigation Water

Irrigation water can be a major source of introduced weeds when the water is from a lake, pond, or river. The use of screens at the intake pipe can help filter out large-seeded weeds. Although the screens may require frequent cleaning, it is easier to remove the weed seeds from the screens than to remove weeds from seedbeds. When irrigating from ponds, it is best to keep the pond edges free of weeds. When installing a new nursery, a deep well is preferred over surface water sources.

Cover-Crop Seeds

Sowing weed seeds along with cover-crop seeds can be minimized by always using certified seed. At one nursery, the use of cheap, uncertified seed resulted in a large infestation of morning glory (*Ipomoea* spp.). Regulations require certified seed to be free of primary noxious weeds and to contain only small amounts of common weeds. The percentage of common weeds must be shown on the certification tag. It is best to buy seeds with the lowest percentage of common weeds.

Machinery

Weed seeds, rhizomes, and tubers are easily introduced by machinery. Frequent washings reduce the amount of weeds introduced by soil carried on tillage equipment, tractors, and vehicle tires. Weed seeds are often spread by combines during the harvest of cover crops. For this reason, it is better to leave cover crops unharvested unless combines are carefully cleaned before and after use.

Some weeds spread slowly by vegetative means alone. For example, nutsedge would spread less than 3 m per year without help from nursery workers and their cultivation equipment (Klingman and Ashton 1975). For this reason, special effort should be made to avoid spreading nutsedge. Infested seedbeds can be mapped in the summer to help identify areas in which to avoid soil movement (thus spreading nuts) in the winter after lifting. Nutsedge-free areas should be lifted first to avoid the spreading of tubers to noninfested fields. Time taken to prevent mechanical dissemination of nutsedge tubers will be repaid severalfold in the ease of eliminating nutsedge from a nursery.

Wind

Wind will constantly introduce weed seeds, but the impact may be reduced by planting windbreaks between the nursery and adjacent weed sources. Windbreaks will also help protect the nursery from high winds that blow mulch off beds, blow plastic off fumigated soil, and cause excessive drying of the beds.

Mulches

In the past, the use of straw mulches after sowing was a major source of introduced weeds (Bland 1974, Mullin 1965, South 1976). For example, at some nurseries, pine straw mulch increased time spent on handweeding by 260 to 500 hours per hectare (Bland 1974, South 1976). Due to the expense and introduction of weed seed, the use of straw mulches has declined over time. Several managers were using pine straw in 1980 (Boyer and South 1984), but today few use it due to the expense. New bark or sawdust mulches are relatively weed free (Stringfield 2005), but old, stockpiled supplies are often contaminated with weed seed. Several hardwood managers apply weed-free soil stabilizers after sowing. Most of these managers will forgo using mulch and, therefore, will apply additional irrigation.
Organic Amendments

In some cases, use of organic amendments will introduce weed seeds. In one nursery, rush (Juncus spp.) was introduced when an organic amendment was donated to the nursery. Yard litter and leaves collected by municipalities can contain many types of weed seeds. The value of these “free” amendments will depend on the increase in cost of subsequent weed control. Composting can help reduce the viability of many weed seeds, but some will likely remain viable.

Handweeding

Frequent weeding can be an important IWM tool. Handweeding is best conducted when the soil is moist and weeds are small (figure 1). Weeding small plants has two advantages: the weeds are often removed before they go to seed, and the weeds are easier to remove when the roots are small. In many cases, the total weeding cost is less than if weeding is delayed until the weeds are large and hard to remove.

The use of seasonal labor varies with each nursery. When using contract labor, the cost of 100 hours of handweeding might exceed $4,900 per hectare. Therefore, the use of herbicides depends, in part, on the cost of handweeding. At some nurseries, herbicides are used and minimal handweeding is required, but other managers rely on handweeding and, except for soil fumigants, do not apply herbicides to hardwood seedbeds. With an effective IWM program, hardwood seedbeds may require less than 60 hours of handweeding per hectare (South 2009).

Mechanical Cultivation

Mechanical cultivation for weed control between seedling rows is feasible when the spacing between rows is 30 cm or wider (Barham 1980, Stanley 1970). Several types of seedbed and alleyway cultivators are available (Lowman et al. 1992). For example, a “brush-hoe” can be effective in reducing weeds in hardwood seedbeds (South 1988), although it has some drawbacks. To obtain a specified level of weed control requires a precise adjustment to ensure a proper working depth (Weber 1994). Weeds within the row remain uninjured. Any small error in alignment can damage hardwood seedling roots or shoots. In 2006, only 2 hardwood managers (out of 26) were using mechanical weed control between seedling rows (South 2009).

Living Mulch

The “living mulch” concept was used by the Virginia Department of Forestry during the 1980s. Rye (Secale cereale L.) seed were drilled into the sections immediately before sowing hardwoods in the fall. The “living mulch” protected the fall-sown seedbeds from injury by wind, rain, and frost. This system was also effective for fall-sown hardwoods in Illinois and Indiana (Stauder 1994, Wichman 1994). Nursery managers in Georgia and Tennessee currently sow wheat (Triticum aestivum L.), rye, or oats (Avena sativa L.) on prepared beds before fall sowing acorns (Ensminger 2002). The living mulch is then sprayed with an herbicide in February before emergence of oak seedlings. This system provides several advantages, including a retardation of weed growth.

Fall Sowing

Fall-sown hardwoods, such as red oaks (Quercus spp.) and black walnut (Juglans nigra L.), typically have fewer weeds the following year than spring-sown crops. This reduction in weeds is due to application of herbicides sooner in the spring and the fact that fall-sown crops typically achieve full canopy closure and shade out weeds sooner than spring-sown crops (figure 2).

Soil Fumigation

At many nurseries, effective soil fumigation with methyl bromide has been a cornerstone of a successful IWM plan. Several nursery managers contend that soil fumigation is more important when growing hardwoods because, when compared with conifers, fewer effective, registered herbicides exist (Murray 2009). It is relatively easy to justify soil fumigation, because it typically costs less than 6 percent of the
wholesale value of the hardwood crop. For this reason, most managers in the South fumigate the soil before each hardwood seedling crop. Although dazomet is used in northern hardwood nurseries (Schroeder and Alspach 1995, Storandt 2002), hardwood managers in the South have traditionally relied on a combination of methyl bromide and chloropicrin to reduce weed, nematode, and fungi populations.

In the future, methyl bromide will continue to be produced by oceans, fires, and certain plants and fungi. It is possible, however, that production in the United States will decline due to regulations (Enebak et al. 2013) which might drive up production costs. If this occurs, some managers will likely switch to alternative fumigants, such as chloropicrin and dazomet, that have relatively low efficacy on weeds. Although dazomet can control certain soilborne pests, it is not effective in controlling nutsedge (Carey 1995, Carey and South 1999, Fraedrich and Dwinell 2003). If the use of effective soil fumigants declines, nursery managers will need to increase herbicide use to control weeds in fallow fields or cover crops.

Herbicide Applications in Cover Crops

The number of mature weeds in this year’s cover crop will determine the amount of weed seeds present in next year’s seedbeds. Some cover crops grow quickly and shade out the soil, thus reducing germination and growth of weeds. These cover crops are preferred over those that are sown at low densities and allow light to reach the soil. In the South, most herbicides used in cover crops will have no effect on seedling growth the following year. This is especially true when the herbicide is applied before July 1. It is best to check with nursery experts, however, to ensure that carryover from one season to the next will not be a problem. Some herbicide labels include information about the number of months required before sowing sensitive crops.

Cover-crop rotation provides an excellent opportunity to control weeds that are resistant to herbicides used in seedbeds. For example, if only diphenyl ether herbicides (WSSA group 14) were continually used on an area, resistant weed species such as prostrate spurge (Euphorbia maculata L.) could rapidly increase. By using an herbicide from a different herbicide family in the cover-crop area, however, the spread of troublesome weeds could be checked. Recommendations for using herbicides in cover crops vary, depending on the region.
Table 2. Common names (WSSA) and trade names of selected herbicides used in southern hardwood nurseries.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Product name</th>
<th>Comment</th>
<th>WSSA group</th>
<th>REI* hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil fumigant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloropicrin</td>
<td>Various</td>
<td>Good nutsedge control</td>
<td>-</td>
<td>>120</td>
</tr>
<tr>
<td>Dazomet</td>
<td>Basamid</td>
<td>Poor nutsedge control</td>
<td>27</td>
<td>>120</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>Various</td>
<td>Excellent nutsedge control</td>
<td>-</td>
<td>>120</td>
</tr>
<tr>
<td>After sowing for oak, walnut, hickory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyfluorfen</td>
<td>Galigan, Goal, Goaltender</td>
<td>Field grown</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>Very selective grass herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clethodim</td>
<td>Clethodim, Select, Shadow</td>
<td>Grass control only</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Fluazifop-p-butyl</td>
<td>Fusilade</td>
<td>Grass control only</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Sethoxydim</td>
<td>Segment, Sethoxydim</td>
<td>Grass control only</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Herbicides with some selectivity when applied over established hardwoods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCPA</td>
<td>Dacthal</td>
<td>Found in groundwater</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Dithiopyr</td>
<td>Dimension</td>
<td>Established plants only</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Oryzalin</td>
<td>Surflan</td>
<td>May cause galls</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>Pendulum (Aquacap)</td>
<td>May cause galls</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Prodiamine</td>
<td>Barricade</td>
<td>May cause galls</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Trifluralin HF</td>
<td>Certain labels only</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>Lontrel</td>
<td>Will injure legumes</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Oxyfluorfen</td>
<td>Goaltender</td>
<td>Field grown</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>S-metolachlor</td>
<td>Pennant</td>
<td>Active on sedge</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Napropamide</td>
<td>Devrinol</td>
<td>Some grass control</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Granular herbicides—can be applied over transplanted stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flumioxazin</td>
<td>Broadstar</td>
<td>Apply to dry leaves</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not apply to bedding plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxadiazon</td>
<td>Ronstar</td>
<td>Apply to dry leaves</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Oxyfluorfen +</td>
<td>OH2</td>
<td>Apply to dry leaves</td>
<td>14 + 3</td>
<td>24</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethanamid +</td>
<td>Freehand</td>
<td>May cause galls</td>
<td>15 + 3</td>
<td>24</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granular herbicides—cannot be applied to seedbeds due to label restrictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlobenil</td>
<td>Casoron</td>
<td>4 weeks after transplanting</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Pronamide</td>
<td>Kerb</td>
<td>Not for use on 1-0 stock</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Isoxaben</td>
<td>Gallery</td>
<td>Assume all risks</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Simazine</td>
<td>Princep</td>
<td>Oak transplants</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Nonselective herbicides—applications must be directed away from seedlings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Roundup</td>
<td>Use shielded applicator</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Pelargonic acid</td>
<td>Scythe</td>
<td>Use shielded applicator</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Sulfosulfuron</td>
<td>Certainty</td>
<td>Avoid contact with leaves</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

WSSA = Weed Science Society of America.
*REI: Restricted-entry intervals for agricultural uses. Check the AGRICULTURAL USE REQUIREMENTS section of the label for required REI.
and weed species to be controlled. Specific recommendations on herbicides and rates used can be obtained from the local extension service. Some genetically modified cover crops have a glyphosate-resistant gene that some managers use as part of an IWM program to reduce nutseed in cover crops.

Herbicide Applications on Fallow Land

Weed control with herbicides is much easier on fallow ground (figure 3) than it is on hardwood seedling beds, because (1) a greater number of herbicides may be applied to fallow ground, (2) injury from drift is less likely, (3) multiple applications can be made, (4) timing of the application is not restricted to stage of hardwood growth, and (5) it is easier to see the weeds. For troublesome weeds like nutseed, use of multiple applications of glyphosate on fallow ground is the preferred method to reduce the number of tubers in the soil (Fraedrich et al. 2003). At some nurseries, more glyphosate is used in fallow fields than is used in bareroot seedbeds (Juntunen 2001).

Herbicide Applications on Riserlines and Fencerows

It is important to control weeds on riserlines and fencerows, not only to prevent weeds from producing seed, but also to reduce the cover available for small rodents. Some managers apply a tank mix of two or three preemergence herbicides to riserlines at the time of sowing to prevent weeds from maturing and going to seed. Other managers will wait for weeds to develop and then apply a postemergence herbicide to kill emerged weeds. This type of application is often done with a shield designed to reduce drift to the hardwood crop (figure 4). Several types of shields can be used to reduce the potential of drift when applying herbicides to riserlines (Kees 2008). The number of herbicides that may be applied on riserlines is more than the number the Environmental Protection Agency allows to be applied to tree seedlings. To reduce the risk of injury, managers should avoid applying herbicides that are very water soluble (i.e., will move into adjacent seedbeds) or are very persistent in the soil.

Herbicide Applications in Seedbeds

At Time of Sowing

Several hardwood nursery managers do not apply herbicides at time of sowing because they typically sow on recently fumigated fields. Fumigated soils, however, can easily be contaminated with wind-blown seed; therefore, some managers apply herbicides at time of sowing (Jacob 2009, Murray 2009). Several preemergence herbicides can be applied at sowing to large-seeded species like oaks, black walnut, pecan (Carya illinoinensis L.), and hickory (Carya spp.). By contrast, only a few preemergence herbicides may be applied to small-seeded species like American sycamore (Platanus occidentalis L.). Managers who apply herbicides at time of sowing, in general, have less weeding time than those who rely solely on soil fumigants.
Oxyfluorfen is labeled for use on field-grown deciduous trees and has been used operationally as a preemergence herbicide (applied just after sowing) on large-seeded hardwoods (Jacob 2009, Murray 2009). Application should be made before seeds germinate because injury might occur if the herbicide contacts newly emerged tissues. Once oxyfluorfen is applied to the soil, large-seeded hardwoods can usually penetrate the herbicide barrier without much damage.

After the First True Leaves Have Formed

Herbicide selectivity is based on physiological or morphological differences between crop and weed. For example, a physiological difference between broadleaves and grasses is the basis of selectivity for clethodim, sethoxydim, and fluazifop-p-butyl. As a result, these postemergence herbicides typically do not cause injury to hardwoods after their first true leaves have formed. Preemergence herbicides (like prodiamine and pendimethalin) are active mainly on seed germination. These herbicides can also be applied after hardwood seedlings have germinated and have developed a few true leaves. The herbicide prodiamine is toxic to small hardwood seed, such as sycamore, if applied at time of seeding, but, when applied after the seedlings are 5 cm or taller, the chance of injury is greatly reduced. Although these herbicides will not control emerged weeds, they will help keep subsequent weed seed from germinating (South 1984b). Several nursery managers in the South successfully use this technique.

Some foliar-acting postemergence herbicides (like clopyralid) are selective and will affect the foliage of some weeds without harming certain hardwoods (Lawrie and Clay 1994, South 2000, Jacob 2009). Clopyralid, however, does have activity on legumes and, therefore, will injure eastern redbud (*Cercis canadensis* L.) and black locust. Injury has also been observed on black alder (*Alnus glutinosa* L.), hackberry (*Celtis occidentalis* L.), and dogwood (*Cornus florida* L.).

Granular Herbicide Formulations

The WSSA definition of granular is “a dry formulation consisting of discrete particles generally less than 10 mm3 and designed to be applied without a liquid carrier.” Granular herbicides are often used in horticultural nurseries and a number of granular herbicides are labeled for use on hardwoods. The cost of using granular herbicides, however, is more than the cost for using liquid formulations. The cost to treat with granular herbicides could exceed $300 per hectare, which may be 8 to 10 times the cost of applying the same active ingredient sold as a liquid formulation.

An advantage of granular herbicides is that when hardwood leaves are dry, the granules drop to the ground and do not affect the foliage (figure 5). When applied to dry foliage, herbicide granules of oxyfluorfen and oxadiazon may be less phytotoxic to foliage than liquid formulations (which may contain inert ingredients like naphthalene). For cases in which granules are lodged in the foliage, a sufficient amount of irrigation soon after treatment will reduce the chance of phototoxicity. For this reason, a wide variety of species are listed on granular herbicide labels. Granules of flumioxazin, oxyfluorfen, or oxadiazon could cause some temporary necrosis if they are allowed to remain on leaves.

Granular herbicides are not applied at time of sowing but are applied after the hardwoods have developed true leaves. Although effective weed control can be obtained with granular herbicides (Reeder et al. 1991), most nursery managers choose not to use granular formulations due to the added expense and because application is easier when herbicides are sprayed.

Managers should be aware that water dispersible granules (WDGs) do not fit the WSSA definition, even though they are called “granules.” Therefore, do not treat WDG formulations as though they were true granular formulations. WDG formulations should be mixed with water and applied as a liquid spray. Do not apply WDG formulations without following the label directions.
Directed Herbicide Application Using Shields

One way to provide selectivity is to ensure the herbicide does not come in contact with the hardwood foliage. Avoiding contact can be achieved with careful, directed applications by hand or by using shields when applying herbicides between drill rows (figure 6). To reduce the potential for seedling injury, most foliar-active herbicides should be directed away from the crop and toward the weeds.

Some nursery managers apply glyphosate “as needed” to control troublesome perennial weeds between rows using shielded sprayers (South and Carey 2005, Stallard 2005, Windell 2006). Glyphosate is a foliar-applied, nonselective herbicide with no soil activity. Glyphosate is bound tightly to soil particles and is unlikely to move off site. The relatively slow absorption of glyphosate into foliage causes efficacy to be reduced by rains within a couple of hours of application.

Herbicide Injury

Although many factors can injure seedlings, herbicides are often the first to be blamed. For example, herbicides have been blamed for injury caused by fertilizer. To reduce chances of a misdiagnosis, nursery managers should leave a few untreated areas in the seedbeds (i.e., check plots). The size of the check plots can be relatively small. These check plots are not only useful for diagnosing herbicide injury (figure 7), but they also provide a useful demonstration of what seedbeds would look like without the use of herbicides.

In some cases, herbicide injury will be minor and ephemeral. In fact, some herbicides might initially cause injury but eventually produce stock that is larger than untreated controls with no injury symptoms (Reeder et al. 1994). Therefore, most hardwood managers are more concerned with treatments that cause an “economic” injury to their crop than they are with one that causes a “cosmetic” injury to leaves, especially when hardwoods drop their leaves before lifting.

Economic injury occurs when an herbicide treatment reduces crop value (e.g., when the number of shippable seedlings produced per seedbed is reduced). The problem is determining which herbicides reduce seed germination before operational use. In some cases, herbicide trials are designed in such a

Figure 6. This photograph shows an example of a shielded herbicide applicator designed for hardwood seedbeds. The advantage of this model is that one person can operate it. (Photo by David South, 2010)

Figure 7. Use of untreated check plots can help to properly identify herbicide injury. Seedlings on both seedbeds experienced sandblasting during a May storm. Seedlings on the bed on the left were injured by sand that carried an herbicide, while those on the right were blasted with soil that did not contain a herbicide. In this case, injury was temporary and seedlings were fully recovered by July. (Photo by David South, 2010)
manner that even a 50-percent reduction in crop value would not be classified as “significant” injury (Garrett et al. 1991, South 1992). The low power of these experimental designs is due primarily to the high level of variability in many hardwood seedbeds.

Herbicide injury can result when the label instructions or precautions are not followed. It can also occur if the herbicide sprayer is not properly calibrated. Without regular calibration, uniformity may decrease and risk of injury may increase. In addition, it is wise to consult with nursery experts before applying the herbicide because new information may have occurred since the label was written. For example, some managers have observed injury to dogwood when a certain herbicide in WSSA group 1 was applied to newly emerged seedlings. These injuries occurred because one brand contained 65 percent solvent naphtha and 7 percent naphthalene (which can injure new foliage when applied under high temperatures). Consultation with an expert may have prevented injury if the expert has recommended a similar product that contained low amounts of naphtha and naphthalene.

Hardwoods occasionally have been injured when environmental conditions are right and the herbicide “lifts off” the soil within water vapor and then drifts over newly emerged hardwood seedlings (South 1984a), a process known as “co-distillation.” This type of injury may occur soon after seedbeds have been treated with oxyfluorfen on warm, sunny days. The injury is usually just cosmetic—the new leaves turn brown. It is fortunate that the affected seedlings typically recover and grow normally.

At a few nurseries, the use of dinitroaniline herbicides (WSSA group 3) has injured certain hardwood species (Derr and Salihu 1996, Hood and Klett 1992, South 1992, Warren and Skroch 1991). In some cases, herbicide galls formed on the stem near the groundline (Altland 2005, South 2009). For example, sugarberry (Celtis laevigata Willd.) was injured after applying prodiamine and pendimethalin (figure 8). A postemergence application (after both weed and crop emergence) of oryzalin has caused injury and stem breakage on American sycamore, river birch (Betula nigra L.), yellow poplar (Liriodendron tulipifera L.), redbud, elm (Ulmus spp.), buttonbush (Cephalanthus spp.), plum (Prunus spp.), and black willow (Salix nigra L.).

In some cases, herbicide injury occurs when an herbicide applied to fallow ground carries over to the next year. For example, injury occurred when certain herbicides in the imidazolinone family were used the previous year on fallow land. The length of time that an herbicide remains biologically active in the soil is determined by a number of factors. In the South, most herbicides in WSSA groups 1, 3, and 15 do not persist long enough to affect hardwoods sown the next year. In regions where soils are cooler (e.g., Saskatchewan), however, herbicide carryover is more likely. This difference is primarily because the rate of microbial decomposition is slower in Saskatchewan than in Alabama or Georgia.

Herbicide injury will sometimes occur after a windstorm. For example, at one nursery, herbicide injury to sawtooth oak (Quercus acutissima Carruth.), swamp chestnut oak (Q. michauxii Nutt.), and persimmon (Diospyros virginiana L.) was noticed 2 days after seedlings were sandblasted (Skidmore 1966) with high winds. The herbicide (i.e., oxyfluorfen) was carried with the soil, and the abrasions allowed for the herbicide to enter the stem and foliage. Although oak seedlings in check plots were also sandblasted (figure 7), they were not injured, because the sand did not contain the herbicide. Use of a soil stabilizer would have reduced the amount of sandblasting and would have subsequently reduced this type of injury.

In some situations, injury to adjacent seedbeds has occurred when dazomet or metam sodium was applied without a tarp (Buzzo 2003, Scholtes 1989, Starkey 2011). Therefore, to reduce the potential for injury to adjacent crops, a plastic tarp is recommended when fumigating with these compounds. Some contractors now use a plastic tarp only when fumigating with metam sodium.

When using liquid fertilizers in returnable totes, it is wise to deal with a reputable dealer. Reputable dealers either do not

Figure 8: Some hardwood species are more tolerant of herbicides than others. For example, sugarberry (Celtis laevigata Willd.) can be injured by certain dinitroaniline herbicides. Photo by Chase Weatherly, Arborgen, 2008)
refill herbicide totes with fertilizer solutions or they ensure the totes are thoroughly cleaned before they are refilled. At one nursery, injury resulted when a fertilizer dealer did not thoroughly clean out a tote that had previously contained triclopyr.

Economics

Some nursery managers base their weed management decisions on securing economic profits and on maintaining a good reputation for producing high-quality nursery stock. Their justifications for using herbicides include keeping seed efficiency high (South 1987) and production costs low. By contrast, other managers operate as a nonprofit entity and their primary objective is to achieve target production goals within a given budget. Both management systems can benefit when handweeding costs are reduced by using an effective IWM program.

The easiest way to justify the use of herbicides is to compare the cost of treatment with the cost of handweeding. For example, at a nursery where hand labor costs $15 per hour, an herbicide application that costs $30 per nursery hectare would be justified if it reduced handweeding by 2 hours or more. Thus, when seedbeds require 100 hours of handweeding per hectare ($1,500 total) to remove small grasses, 10 applications of herbicides (i.e., $300) could reduce weed control costs by as much as $1,200 (assuming the use of herbicides eliminated the need for hand weeding the grass).

Another method for justifying herbicide use is to determine how many seedlings are lost to weed competition and to handweeding. If a nursery loses $0.30 every time a weeder inadvertently pulls up a seedling, then saving 100 seedlings could justify an herbicide treatment that cost $30. Therefore, even in rare cases in which use of herbicides does not reduce the annual cost of weed control, their use could still be justified when seedling sales are increased. An examination of a hardwood nursery budget might reveal that herbicide treatments amount to less than 0.5 percent of the retail value of the crop (table 3). Therefore, use of herbicides may be justified when seedling production is increased by just 0.5 percent, which would be equivalent to selling 502,500 seedlings instead of 500,000 seedlings per hectare.

Conclusions

Because of the numerous species involved, a single herbicide regime (e.g., South 1992) is unlikely to be effective for all hardwood species. Weed species, hardwood species, soil types, and labor costs vary with nursery; therefore, weed management regimes vary with nursery. The most effective IWM programs, however, include a rigorous sanitation program and judicious use of efficacious herbicides.

Disclaimer

The mention of commercial products is solely for the information of the reader. Endorsement is not intended.

Address correspondence to—

David South, Emeritus Professor, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849; email: southdb@auburn.edu

Acknowledgments

The Auburn University Southern Forest Nursery Management Cooperative supported the development and writing of this report.

REFERENCES

Table 3. Example of weed management costs in hardwood nurseries. Data assumes 444,600 seedlings per hectare and a price of $0.30 per seedling.

<table>
<thead>
<tr>
<th>Weed management practice</th>
<th>Active ingredient (kg/ha)</th>
<th>Dollars per thousand seedlings</th>
<th>Percentage of total crop value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicides in seedbeds</td>
<td>2.24</td>
<td>0.50</td>
<td>0.2</td>
</tr>
<tr>
<td>Herbicides on fallow ground</td>
<td>—</td>
<td>0.70</td>
<td>0.2</td>
</tr>
<tr>
<td>Handweeding—$15 per hour</td>
<td>—</td>
<td>2.08</td>
<td>0.7</td>
</tr>
<tr>
<td>Soil fumigation</td>
<td>392</td>
<td>17.22</td>
<td>5.7</td>
</tr>
<tr>
<td>Total</td>
<td>—</td>
<td>20.50</td>
<td>6.8</td>
</tr>
</tbody>
</table>

