Pest control problems encountered in seedling production of Arizona cypress in Alabama

by Terry C. Davis, J. F. Goggans, and R. J. Meier

Arizona cypress (Cupressus arizonica Greene) Christmas trees are becoming increasingly popular throughout the South. Alabama nurserymen have encountered many problems during the past two decades in establishing and maintaining nursery stands of this species through the first year. These problems are complex in nature and involve entomological, pathological, and physiological factors that may appear alone or in various combinations.

Background

The pathology of Arizona cypress has been summarized by Wagener (6). He states that low disease incidence in the species in native habitats is more a matter of environmental factors not being conducive to disease development than inherent disease resistance. Wagener also stresses that Arizona cypress appears to be particularly subject to disease in areas of high relative humidity. These two statements explain to some extent why growing Arizona cypress in Alabama is difficult. The pathology of Arizona cypress in Southern nurseries was summarized by Hepting (4). He stated that Phomopsis juniperovora blight is the most serious problem. This opinion is shared by Hodges (5), who earlier did considerable research to explain pathological problems of Arizona cypress in southern nurseries and outplantings. Some foliage problems encountered with seedling production are intermittent in nature (1, 2).

Perhaps the greatest problem concerning Arizona cypress in Alabama nurseries during the past 3 years has been damage caused by larvae of the lesser cornstalk borer (Elasmopalpus lignosellus Zeller). In many cases, borer damage provides infection courts for secondary fungi. Similar problems have been described previously (3). Damage can be classified as follows: (1) Root lesions; (b) lower stem lesions (with occasional girdling); (c) hasmal mining of lowermost branches; (d) small circular feeding lesions in upper stems and larger branches; (e) elongated feeding lesions in crotches of upper branches; and (f) foliage clipping. These problems can occur alone (mostly involving root lesions or lower stem lesions) or in various combinations. The most serious type of damage appears to be basal mining of lowermost branches (fig. 1) that leads to invasion and subsequent necrosis by weakly parasitic fungi. A Dothiorella species appears to be the most common invader in these cases.

Previous studies by the senior author of this article and by Kelley (unpublished) in the Auburn Forest Nursery during 1969-71 were conducted to clarify the complex pest problem of Arizona cypress commonly referred to as “seedling blight.” Although treatments in these studies with various fungicides, insecticides, and anti-transpirants (alone and in various combinations) generally yielded seedlings that graded better than those of control plots, wide variation within individual plots precluded significant tests of differences. Four insecticides, Systox, Monitor 6S (both systemics), malathion, and methoxychlor, apparently gave very little control of the lesser cornstalk borer. Two anti-transpirants, Wilt-Pruf and pinolene, appeared ineffective in reducing losses, except that pinolene did produce a temporary improvement in appearance of seedlings. Previous studies by Kelly (unpublished), using the fungicides benomyl, liquid copper (TC90), Difolatan 4F, Cyprex, Maneate, and Duter produced results almost identical to those of the senior author with respect to variation and significance. However, plots that had been partially shaded (63 percent) did produce significantly better results than unshaded plots, indicating that perhaps some physiological factor had been circumvented.

This study discussed here was conducted at the Auburn Forest Nursery during 1972 to investigate control of the lesser cornstalk borer and the complex fungal invasions that follow.

1 Assistant Professor, Professor, and Research Associate, Department of Forestry, Agricultural Experiment Station and School of Agriculture, Auburn University, Auburn, Ala. 36830

2 Research supported by (Hatch) Research Funds.

3 Kelley, Walter D., research associate, Department of Botany and Microbiology, Auburn University.
Materials and Methods
Seed for this study were collected from local plantation. and test plantings were established at Auburn Forest Nursery in Early April, 1972. A split-plot design was used with insecticides in whole plots and fungicides in subplots. Fungicides were assigned randomly within insecticide plots previously assigned randomly. plots were replicated four times.

Three insecticide treatments were as follows:

(1) Dieldrin applied to surface as granules at a rate of 1 pound active ingredient per acre. Granules were mixed into the top 4 inches of soil with a rototiller prior to seeding.

(2) Benzenehexachloride (BHC) applied at a rate of 2 pounds active ingredient per acre. This solution was made using 11 percent emulsifiable concentrate in water. Applications were made with a CO2 pressurized hand sprayer at 40 pounds constant pressure. Applications were made every two weeks from the first week in June through mid-July, and weekly applications were made afterwards until mid-October.

(3) Control

Three fungicide treatments were as follows:

(1) Difolatan at a rate of 2.5 pounds active ingredient per acre applied biweekly beginning June 5 and continuing until mid-October.

(2) Benlate at a rate of 0.4 pound active ingredient per acre applied on the same schedule as Difolatan.

(3) Control

Sampling Procedure
In early September, four random samples of 25 seedlings each were taken from each subplot. Seedlings were examined individually for damage caused by lesser cornstalk borers and fungi. Borer damage was classified as root damage, top damage, or both. Damage by fungi, expressed as percentage of dead crown, was put in one of the following three classifications: 0 to 33 percent, 34 to 67 percent, and 68 to 100 percent. In addition, all seedlings having less than 5 percent dead crown were placed in a group called "perfect" and all completely killed seedlings were placed in a group called "dead". Examinations of seedlings were made by four observers, each reporting on one replication so that differences caused by observers could be removed as variation caused by replicates. Analyses of variance were made for each damage classification.

Results and Discussion
Table 1 summarizes results of fungicide treatments. All differences between means are highly significant (significant at the .01 level) except the differences between Difolatan and control in the <5 percent dead foliage category and between Benlate and Difolatan in the dead category. These two differences were not significant. These results show...
Benlate superior in controlling foliage blight. This is especially evident when out, compares the percentage of seedlings having less than percent dead foliage.

Results of insecticide treatments for borer control are presented in Table 2. The only significant differences found were in the reduction of root and root and top damages. The difference between BHC and Dieldren in controlling root damage was highly significant while the difference between BHC and the control was significant (significant at the .05 level). In controlling damage to both root and top of one seedling, the differences between BHC and Dieldren and BHC and the control were highly significant. No significant interactions between insecticides and fungicides were found.

Although the control of borer root damage by BHC is statistically significant, the percent gain is so small that it probably has little practical value.

Conclusions

Although the number of seedlings damaged by the lesser cornstalk borer was high, seedlings showed little or no serious effects when secondary fungi were controlled. Seedling mortality was reduced to an acceptable level. Borer-inflicted wounds in Arizona express seedlings heal by a rapid formation of callus tissue when secondary fungi are controlled. Benlate provided adequate control of secondary fungi, resulting in seedling stands that were larger and healthier than in any other treatment or combination of treatments.

Literature Cited

NOTE

Articles in this periodical may contain information about pesticides. The following notations are offered for your protection:

Warning: Recommendations for use of pesticides are reviewed regularly. The registrations on all suggested uses of pesticides in this publication were in effect at press time. Check with your County Agricultural Agent, State Agricultural Experiment Station, or local forester to determine if these recommendations are still current.

Caution: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife— if they are not handled or applied properly. Use all pesticides selectively and carefully as described. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.