Container Size Affects Dimensions Of White Spruce, Jack Pine Planting Stock

J. B. Scarratt
Canadian Forestry Service

Partly as a result of economic pressures, an increasing interest has surfaced over the past decade in the development of container-planting systems as a possible means of achieving large-scale forestation rapidly and economically.

Recent developments in North America differ from traditional concepts of container planting in two respects. First, practical considerations favor containers considerably smaller than those used in the past, and, second, seedlings are usually planted when only a few weeks old and much smaller than conventional nursery stock. The reasons for this are economic rather than biological, influenced by such factors as nursery production costs, weight in relation to transportability, and ease of planting.

Containers used for operationalscale planting in Canada up to now have ranged in size from the 3 -inch $\times 9 / 16$ inch diameter split-plastic tube (MacKinnon, 1970) to the $41 / 2$-inch x 3/4-inch diameter Waiters' bullet (Kinghorn, 1969). Vigorous planting stock can be raised in containers of these dimensions, and, practically
speaking, such sizes are ideal for A container exceeding 1% inches in handling at all stages from nursery diameter would probably not be production to field planting. Moreover, practical for large-scale coniferous they are the types of basic units we may planting programs, but it would give an visualize being used in a fully appreciably greater rooting volume than mechanized planting system. However, provided by the split-plastic tube they have drawn some criticism as a currently used in Ontario, raising the result of their small size and restricted question of whether a change to a rooting volume and because of the larger diameter tube might be unknown effects of initial root advantageous in terms of improved constriction by the impenetrable outplanting success and overall container wall upon future tree de- regeneration efficiency. Although velopment and stability.

Although the biological performance of containerized seedlings may dictate for economic reasons the overall size of of the essentially shallow nature of container used will probably remain many of the soils and the desirability relatively small for all large-scale for early root egress, container depth is forestry applications. This will be true likely to remain at about 3 inches.
regardless of whether the container is a physical package planted with the seedling or discarded before planting, or a molded block of compressed growing medium. Diameter is probably the most critical dimension influencing choice of size, since it is a major determinant both of the seedling production capacity of a nursery and transportation and handling costs.
(Boudoux, 1970). In Ontario, because rooting volume may also be increased by increasing container depth, this is less effective in improving rooting density (Boudoux, 1970). In Ontario, because

This article discusses the results of studies comparing the effects of relatively, small changes in container diameter, in the range $9 / 16$ to $11 / 4$ inches, upon the dimensions of white spruce (Picea glauca (Moench) (Voss) and jack pine (Pinus banksiana Lamb.) seedlings raised for an outplanting experiment on 8 - and 12 week production schedules.

Procedure

Seedling growth in the "Ontario" split-plastic tube was compared with that in two other plastic tubes of essentially the same length but of larger diameter. The three tube sizes were: -

1. 3 inch $\mathrm{x} 9 / 16$ inch diam.
(standard in Ontario)
2. $31 / 4$ inch $\mathrm{x} 3 / 4$ inch diam.
3. 3 inch $x 11 / 4$ inch diam.
(locally produced by cutting the bottom from a pill vial and splitting the tube longi tudinally)
When filled to within $1 / 4$ inch of the tube lip, the three sizes contained 0.7 , 1.3 , and 3.4 cubic inches ($11,22,55$ cubic centimeters) of soil, respectively.

The methods used for growing seedlings paralleled as closely as possible those used in operational practice in Ontario, including the type of growing medium used. Tubes were filled by hand with a locally collected, welldecomposed peaty muck, supplemented with potassium sulphate and finely ground monosuperphosphate at the rate of 2 and 35 grams per cubic foot of soil, respectively. These were packed into the standard 12-x 6-inch plastic trays used for the "Ontario" tube, each tray having been painted internally with copper paint to inhibit root growth from the bottom of the tubes.

The white spruce seed was soaked in tap water at $36^{\circ} \mathrm{F}$. for 48 hours before sowing; the jack pine was not pretreated. Seed for the 12 -week-old seedlings was sown in the second week of April and that for the 8weekold ones 4 weeks later. The seed was covered with about $1 / 8$ inch of sand after sowing. Normally only one seed is sown per tube, but in this instance two seeds were sown in each tube to insure against blanks in trays of tubes and the possibilities of non
uniform growth because of differences in aerial growing space. This factor was particularly important with the largest tubes since each tray contained only 32 tubes. Seedlings were thinned to one per tube as soon as secondary needles began to develop.

Seedlings were germinated and grown
under greenhouse conditions. Trays of adverse effect on seedling tubes were initially covered with plastic development from a very early age.
sheeting and burlap to promote By the time seedlings were 12 weeks germination; these were removed as old, the growth restriction imposed by the soon as the germinating seedlings began $9 / 16$-inch tube had become very to touch the plastic. Wetting the burlap evident. Some improvement in growth frequently on sunny days prevented was obtained with the $3 / 4$-inch excessively high temperatures from diameter tube, but was relatively small developing under the plastic. Daytime and generally nonsignificant, indicating temperatures in the greenhouse ranged that this tube also was severely restricting from $70^{\circ} \mathrm{F}$. to $85^{\circ} \mathrm{F}$., depending on seedling development.
external weather conditions; night For all characters measured, seedtemperatures were maintained at $70^{\circ} \mathrm{F}$. lings grown in the $11 / 4$-inch-diameter Day length was extended to 14 hours tubes were conspicuously and signifiby the use of low-intensity incandescent cantly superior to those grown in the lamps. Starting the twenty-first day smaller tubes for both species. Dry from sowing, all seedlings were fer- weight increases were the most tilized at 2-week intervals by substituting prominent, but there were major ina proprietary nutrient solution (RX-15) creases in seedling height, stem diamfor a routine watering.
eter, and root development also (fig.
The experiment used five randomized 2). Although relative increases in dry blocks, each treatment combination weight were very similar for the two being represented by a single tray of species, the improvement in height and tubes within each block. At the stem diameter was most marked in the termination of the experiment, a group spruce. Table 1 summarizes these of 20 seedlings was taken from the relationships by expressing the increased center of each tray for measurement. growth in the $3 / 4$ - and 1 1/4inchData presented here are therefore diameter tubes as a percentage
based upon the means of 100 of seedling size in the $9 / 16$-inch-diobservations for each species X tubesize ameter Ontario tube. Clearly, the only treatment.
improvement in overall growth
of any practical significance at the

Results and Discussion

The effect of tube diameter upon seedling size for the two age classes of each species is presented graphically in figure 1. Sample seedlings from the three tube diameters are illustrated in figure 2.

Generally speaking, differences in size attributable to tube diameter were convincing only in the 12 -week
old seedlings. No significant differences in seedling size related to tube diameter were found in the 8 -weekold seedlings, although jack pine from the 1 $1 / 4$-inch-diameter tubes did show a 38 percent increase in dry matter production over the average for the two smaller tubes. This increase was almost equally divided between roots (34 percent) and shoots (39 percent). In fact, both species showed a small, but consistent, trend of increasing size with increasing diameter at this age for all factors measured. Thus, although the differences were not significant, results do indicate that the two smallest tubes began to have an

Figure 1.-Effect of tube diameter on size of white spruce and jack pine tubed seedlings at 8 and 12 weeks from sowing: (a) $9 / 16$ inch, (b) $3 / 4$ inch, (c) $11 / 4$ inch diameter.

end of the 12 -week production period resulted from the use of the I V4inchdiameter tube.

Twelve-week-old seedlings of both species grown in the $11 / 4$-inch-diameter tube were sturdy, well-furnished with foliage, and (in white spruce particularly) were beginning to develop side shoots. The effect of the smaller tube diameters on white spruce was apparently to reduce only the overall size of seedlings and the amount of branching; there was no .noticeably adverse influence upon seedling quality. In jack pine, however, seedling quality did suffer, those grown in the small tubes being tall and spindly with sparse, thin foliage, and small diameter stems. This was especially true of seedlings grown in the 9/16-inchdiameter tubes, where the combination of weak, slender tops and low root mass made for a relatively poor choice of planting material (fig. 2). The poorer quality of these seedlings can undoubtedly be attributed to the effects of mutual shading at the close spacings imposed by the narrow tube diameters. However, even for jack pine, it is not possible to say from this study whether or not the close aerial spacing of the small tubes caused any reduction in growth in addition to that resulting directly from tube diameter. The remarkable similarity between the relative increases in dry matter production of the two species for tube diameters greater than $9 / 16$ inch (table 1) suggests that close spacing did not further reduce growth and that the only detrimental effect it had, at least up to 12 weeks, was in terms of seedling quality. This aspect of container diameter is under continuing investigation.

Conclusions

The results showed clearly that the 9/16-inch-diameter plastic tube currently used in Ontario and elsewhere
severely restricts seedling growth from an early age. Growth is only slightly better in the 3/4-inch-diameter tube and here also growth re-
striction starts early. Over an average cultural regime, better quality planting 12-week production period, much stock of the desired size can be raised growth potential is lost in containers of in a shorter period by using a $11 / 4$-inchthese sizes. For a given diameter container.

Figure 2.-Examples of 12 -week-old seedlings grown in three diameters of split-plastic tubes: White spruce from (A) 9/16-inch-, (B) $3 / 4$-inch- and (C) $11 / 4$-inch-diameter tubes; Jack pine from (D) $9 / 16$-inch-, (E) $3 / 4$-inch- and (F) $11 / 4$-inch-diameter tubes.

Table 1.-Improvement in size of 8-and 12-week-old seedlings grown in 3/4-inch- and 11/4-inch-diameter tubes compared with those grown in the 9/16-inch "Ontario" tube (percent increase)

	Height	Root-collar diameter	Top wt.	Root wt.	Total wt.
White spruce					
8 weeks					
3/4"	3.5	3.5	6.5	6.1	6.5
$11 / 4 "$	2.2	6.1	15.1	7.5	14.2
12 weeks					
$3 / 4^{\prime \prime}$	11.51	4.2	18.4	17.4	18.2
$11 / 4{ }^{\prime \prime}$	$58.9{ }^{1}$	45.1^{1}	113.0^{1}	$90.4{ }^{1}$	$109.4{ }^{1}$
Jack pine					
8 weeks					
$3 / 4^{\prime \prime} \ldots . . .{ }^{-} \times \cdots \cdots \cdots$	8.2	10.7	8.1	18.0	9.7
$11 / 4{ }^{\prime \prime}$...	12.3	21.0	45.0	46.1	45.2
12 weeks					
$3 / 4^{\prime \prime}$.....................	0.0	5.1	19.6	24.71	20.8
$11 / 4^{\prime \prime}$...................	$20.3{ }^{1}$	28.3^{1}	119.2^{1}	90.3^{1}	$113.0{ }^{1}$

${ }^{1}$ Dimensions significantly different from those of seedlings grown in 9/16-inch-diameter tubes at the p. 05 level.

Since there is evidence from field influencing choice of container size. studies that the adverse effects of Mainly these relate to the amount of small containers continue for a period nursery space required to grow seedafter outplanting, we suggest that lings and the transportation and using a / $1 / 4$ - or $1 / 2$-inch-diameter handling costs. Small diameter concontainer would be both biologically tainers such as the $9 / 16$-inch Ontario advantageous and practically feasible. tube have a great advantage in this However, there are obviously a number respect, coupled with ease of planting. of practical considerations

Increasing container diam-

News \& Reviews

(Continued from p. 20)

New Publications

Forest Service, U. S. Department of Agriculture.
1972. Seed and Planting Stock Dealers-A directory of dealers that sell the more common forest and shelterbelt seeds and plants. 26 p.
This Directory was compiled from data furnished by dealers who responded to a letter sent to all commercial dealers of which the Forest Service and
State Foresters had a record. Its
purpose is to provide a list of possible vendors that sell common forest tree and shelterbelt seed and plants. Published for the convenience of planting stock buyers, it contains information on geographic origin of seed; names, addresses, phone numbers of dealers; information from dealers regarding minimum orders and seed certification; commercial sources of seed and planting stock by species; and a sample form for obtaining data on seed origin and quality.

Shipman, R. D.

1971. Soil-applied herbicides in control of temperate zone grass
eter to $3 / 4$ inch doubles the space requirement and unit weight, while there is a fivefold increase in these factors as diameter is increased to $11 / 4$ inches. Additionally, problems of keeping planters supplied with seedlings also increase with increasing container size, thereby inflating planting costs also. Thus, while there is an obvious biological advantage in choosing the largest of these three containers, increased costs should be borne in mind, and hopefully could be offset by improvements in nursery production and field performance.

Literature Cited

Boudoux, M. E.
1970. Effect of tube dimension on root density of seedlings. Canada Dept. Fisheries and Forestry, Bi-monthly Research Notes 26(3) :29-30.
Kinghorn, J. M.
1969. Container system in British Co lumbia. In Western Reforestation. West. Forest. and Conserv. Assn. West. Reforest. Coordinating Comm. Proc. 1969:44-49.
MacKinnon, G. E.
1970. Container planting in Ontario. For. Chron. 46(6):470-472.
es, broadleaf weeds, and woody plants. Rept. covering May 1969Aug. 1971. 140 p. illus. Defense Documentation Center, Dept. of the Army, Fort Detrick, Frederick, Md. Describes, the total vegetation control of dominant poverty grass, Kentucky bluegrass, and timothy on abandoned fields employing granular, pelleted and wettable powder herbicides. Susceptibility ratings are developed according to chemical and rate of application and their effects upon 180 taxonomically classified species occurring in central Pennsylvania.

