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Abstract: The taxon Fusarium oxysporum contains a complex of fungi that are very important 
pathogens of many plant species worldwide, including seedlings grown in forest nurseries. All 
members of this complex appear very similar morphologically, and can often be differentiated only 
on the basis of genetic analyses. Strains of F. oxysporum may be pathogenic or nonpathogenic and 
both types often occupy the same environments and readily infect plant roots. Because of their 
similar requirements, nonpathogenic strains of F. oxysporum have been exploited as biological 
controls of pathogenic Fusarium strains on several types of crops. Although nonpathogenic strains 
infect plants, they do not induce disease symptoms. All previous nonpathogenic F. oxysporum 
strains have been obtained from, and used for, particular agricultural systems. We have ob-
tained several isolates that are nonpathogenic on conifer seedlings and are genetically distinct 
from highly virulent isolates. Three of these are currently being tested on container Douglas-fir 
seedlings within a greenhouse to evaluate their efficacy for controlling root disease caused by 
virulent F. oxysporum isolates.
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Background ______________________________________________________
 Fusarium oxysporum Schlechtend:Fr. has been associated with important diseases in forest nurseries for decades. This 
fungal species causes several different types of diseases, including pre- and post-emergence damping-off, cotyledon blight 
of young germinants, stem and root decay of young seedlings, and root disease of older seedlings (Bloomberg 1971; James 
1986, 1987; James and others 1991). These diseases are often very difficult to control (Bloomberg 1971, 1976; James and 
others 1991; James 2004) and some losses can usually be expected during each seedling crop. Most forest and conservation 
nursery crop species are susceptible to, and often damaged by, F. oxysporum. Damage has especially been severe on pine 
species, including ponderosa (Pinus ponderosa), lodgepole (P. contorta), and western white (P. monticola), as well as Douglas-
fir (Pseudotsuga menziesii), and true firs (Abies spp.) (James 1986; James and others 1991). However, most other conifer, 
hardwood, and brush species can also be impacted by these fungi.
 In bareroot nurseries, F. oxysporum-induced diseases have traditionally been controlled by pre-plant soil fumigation with 
non-selective biocides (James 1989; James and others 1990b; James and others 1996). Chemicals used as fumigants include 
methyl bromide, chloropicrin, metam-sodium, and dazomet (James 1989). These have usually effectively decreased soil 
populations of F. oxysporum and several other pathogens (James and others 1990b; James and others 1996). However, soil 
fumigation has not always resulted in adequate disease control (James and Beall 1999). One major problem is that fumigants 
can potentially kill all soil organisms, including fungi, bacteria, Actinomycetes, nematodes, and insects (James 1989). Fumi-
gants do not preferentially kill pathogenic fungal strains, and can also greatly reduce or eliminate beneficial microorganisms, 
including bacteria and nonpathogenic fungi. When most microorganisms are killed by chemical soil fumigants, the resulting 
soil becomes a vacuum that can readily be colonized by the first introduced organisms (James 1989). Introduced organisms 
can greatly increase their populations due to lack of competition from other organisms. For example, if pathogenic isolates 
of F. oxysporum are introduced into fumigated soil on infested seeds, contaminated equipment, or blowing soil, subsequent 
disease severity may be much higher than if the soil had never been fumigated (James 1989). Chemical and running water 
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seed treatments prior to sowing can significantly reduce 
pathogen inoculum (James 1985b, 1986, 1987; James and 
others 1991). It is nearly impossible, however, to exclude 
all pathogens following fumigation (James 1989). Nursery 
growers hope that beneficial, nonpathogenic microorganisms 
initially colonize fumigated soil at high levels, and effectively 
exclude establishment by pathogens. 
 Recent increases in container production of forest seedlings 
have occurred throughout western North America. Unfor-
tunately, Fusarium oxysporum may also be associated with 
diseases of container seedlings. In particular, damping-off due 
to infested seeds can be severe (James 1986, 1987). In general, 
peat-based growing media are usually not contaminated 
with potential Fusarium pathogens (James 1985a). Some 
pathogen inoculum can be introduced into new container 
seedling crops on re-used plastic or Styrofoam™ contain-
ers (James and others 1988). Fortunately, most growers 
have instituted effective container sterilization procedures, 
especially immersion in hot water (James and Woolen 1989; 
Dumroese and others 2002), which eliminates most potential 
pathogen inoculum. Although pathogen inoculum can reside 
and remain viable within greenhouses, proper sanitation 
procedures, such as treating surfaces within growing areas 
with sterilants (bleach), can greatly reduce potential for 
pathogen introduction into new seedling crops (James and 
others 1990a). In addition to F. oxysporum, another Fusarium 
species (F. proliferatum (Matsushima) Nirenberg) has been 
shown to be an important pathogen on container seedlings 
(James and others 1997). It is especially associated with 
root diseases that tend to occur near the end of the growth 
cycle.

The Nagging Problem ___________
 Fusarium oxysporum is actually a taxon encompassing 
several different Fusarium species that are characterized by 
specific, consistent morphological characteristics (Gordon and 
Martyn 1997; Kistler 1997; Baayen and others 2000; Skov-
gaard and others 2001). For example, some members of this 
species complex are aggressive pathogens that cause either 
vascular wilts or root and stem decay (Gordon and Martyn 
1997; Fravel and others 2003). Other isolates, however, are 
strictly saprophytic and do not elicit disease symptoms on 
infected hosts (James and others 1991; Gordon and Okamoto 
1992; Gordon and Martyn 1997). Saprophytic isolates can 
often be isolated from both healthy and diseased plants 
(James and others 1991; Gordon and Martyn 1997). Although 
they look identical in culture, pathogenic and nonpathogenic 
isolates may have different genetic characteristics (Gordon 
and Okamoto 1992; Kistler 1997; Stewart and others 2004, 
2005). Pathogenic isolates have traditionally been identified 
by their ability to elicit plant disease symptoms. However, 
such tests are expensive, time-consuming, and require several 
weeks or months for completion (James 1996). 
 Fungi within the F. oxysporum species complex produce 
three kinds of spores that can be delimited microscopically: 
multi-celled macroconidia, smaller (usually unicellular) 
microconidia, and resting spores called chlamydospores 
(Nelson and others 1983; James and others 1991). Another 
important taxonomic characteristic of this complex is the 
production of microconidia within groups called false heads 

at the end of short, unbranched monophialides (Nelson and 
others 1983). Some isolates produce varying shades of blue-
purple pigments in culture, particularly on a full nutrient 
medium such as potato dextrose agar. Particular isolates 
will also produce blue sclerotia, especially in older cultures 
(James and others 1991). 
 A serious problem in dealing with these fungi is that dif-
ferent isolates having similar morphology can exhibit wide 
ecological variability (Gordon and Martyn 1997). When we 
isolate F. oxysporum from plants or soil in forest nurseries, we 
cannot differentiate pathogenic from nonpathogenic strains 
based on isolate morphology. Therefore, we cannot predict 
disease impacts because we do not know what portion of the 
F. oxysporum population are aggressive pathogens.

Solving the Problem ____________
 Fortunately, recent work has indicated that pathogenic 
and nonpathogenic strains from forest nurseries can often 
be separated on the basis of genetic characteristics (Stewart 
and others 2004, 2005, 2006). Nonpathogenic strains may 
have metabolic differences from pathogenic strains, such 
as reduced production of plant-susceptible toxins (Amraoui 
and others 2005). Some pathogenic strains within the F. 
oxysporum complex have been reclassified as a new species 
called F. commune sp. nov. (Skovgaard and others 2003). We 
hope that molecular probes may soon be developed that can 
be used to identify pathogenic isolates within host plants, 
particularly before disease symptoms become evident (Kelly 
and others 1988), and within nursery soils (Stewart and 
others 2004). 

Fusarium oxysporum as a Biological 
Control Agent in Other Agricultural 
Settings ______________________
 Because pathogenic and nonpathogenic strains of F. ox-
ysporum exhibit wide genetic diversity (Correll and others 
1986; Appel and Gordon 1994; Kistler 1997; Vakalounakis 
and Fragkiadakis 1999; Edel and others 2001; Lori and 
others 2004), some strains of this fungus can be used as 
biological control agents, either directly on unwanted pest 
plant species (Hebbar 1996) or indirectly to control disease-
causing pathogens on important crops (Alabouvette and 
others 1993; Fravel and others 2003). For example, certain 
strains effectively control broomrapes (Thomas and others 
1998; Amsellem and others 2001) and witchweeds (Ciotola 
and others 2000), which can be important pests on certain 
agricultural crops. Other strains effectively control undesir-
able narcotic plants such as coca, opium poppy, and hemp 
(Connick and others 1998). Strains utilized as mycoherbicides 
are quite host-specific and will only target the undesirable 
plants (Hebbar 1996; Connick and others 1998). 
 Because of the wide diversity within F. oxysporum, scien-
tists began testing the potential of nonpathogenic strains 
to control plant diseases caused by Fusarium. This process 
of biological control was called “cross protection” because 
nonpathogenic strains protected plants from pathogenic 
strains (Hillocks 1986; Louter and Edgington 1990; Huertas-
Gonzalez and others 1999). Nonpathogenic F. oxysporum 
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strains with potential as biological control agents have often 
been isolated from disease-suppressive soils (Alabouvette 
and others 1984; Tamietti and others 1993; Larkin and 
others 1996), that is, soils within which specific diseases 
do not occur even though pathogens may be present. Some 
microorganisms within suppressive soils may limit devel-
opment of pathogens by their effects either directly on the 
pathogens or indirectly on host plants (Liu and others 1995; 
Larkin and Fravel 1999). 
 One of the most studied nonpathogenic strains of F. oxyspo-
rum (designated Fo47) was isolated several years ago from 
disease-suppressive soil in France (Alabouvette and others 
1993; Larkin and Fravel 1999; Benhamou and Garand 2001; 
Cotxarrera and others 2002). This strain has been effective 
against root diseases, especially those caused by pathogenic 
strains of F. oxysporum (Fuchs and others 1997, 1998; Duijff 
and others 1998; Duijff and others 1999; Fravel and others 
2003). This strain has effectively controlled diseases on a 
variety of crops, including tomatoes (Fuchs and others 1997, 
1998; Olivain and Alabouvette 1997; Larkin and Fravel 1998; 
Steinberg and others 1999a, b; Bolwerk and others 2005), 
peas (Benhamou and Garand 2001), asparagus (Blok and 
others 1997), carnations (Postma and Rattink 1992), and 
Eucalyptus seedlings (Salerno and others 2000). However, 
in a small laboratory test (James 2002), strain Fo47 was 
ineffective in controlling Fusarium damping-off of young 
Douglas-fir germinants. Strain Fo47 is currently marketed in 
France as “Fusaclean” (Natural Plant Production, Nogueres, 
France) (Benhamou and Garand 2001).
 Another highly-effective nonpathogenic strain (designated 
CS-20) has effectively controlled Fusarium root diseases on 
tomatoes, muskmelon, basil, and watermelon plants (Larkin 
and Fravel 1999; Fravel and Larkin 2002; Fravel and others 
2005). Strains Fo47 and CS-20 have not yet been registered 
for use in the United States. However, another strain (251/2) 
is currently undergoing registration as a biological control 
agent on specific agricultural crops (Guillino and others 1995). 
Several additional strains of nonpathogenic F. oxysporum that 
exhibit potential as biocontrol agents include CS-1, Fo-B2, 
70T01, MT 0062, and Fop2 for tomatoes (Yamaguchi and oth-
ers 1992; Tamietti and others 1993; Larkin and Fravel 1999; 
Shishido and others 2005), Fo90105 for chickpeas (Hervas 
and others 1997), and Fo47b10 for carnations (Lemanceau 
and others 1993). These strains have shown biocontrol ef-
ficacy in specific experiments on particular crops, but are 
currently unavailable for commercial use. 
 Several different mechanisms have been identified by which 
nonpathogenic F. oxysporum strains can elicit biological 
control. Probably the most common is the induction of host 
plant resistance (Damicone and Manning 1982; Alabouvette 
and others 1993; Hervas and others 1995), primarily through 
two processes: induced systemic resistance (ISR) (Fuchs and 
others 1997; Duijff and others 1999; Larkin and Fravel 1999; 
Freeman and others 2002) and systemic acquired resistance 
(SAR) (Kubota and Abiko 2001; He and others 2002). Each 
of these processes result in induction of different chemicals 
within host plants to prohibit either infection or development 
of pathogenic fungi. For example, ISR induces production of 
pathogenesis-related proteins such as chitinases and ß-1-3 
glucanases (Benhamou and Garand 2001), whereas SAR 
causes formation of other proteins such as peroxidase and 
phenylalanine ammonia-lyase (He and others 2002). These 

chemicals are distributed systemically within host plants, 
causing resistance to root, foliage, and stem pathogens (Ben-
hamou and Garand 2001; He and others 2002). Induction of 
resistance usually requires plants to be initially exposed to 
the biocontrol agent before pathogens are present (Alabou-
vette and others 1993; Fuchs and others 1999) and often 
at much higher inoculum levels than pathogens (Bolwerk 
and others 2005). In some cases, resistance is induced by 
nonpathogenic endophytic organisms residing within host 
plants (Nejad and Johnson 2000). Systemic resistance occurs 
quickly, but may not remain for long time periods (Hervas 
and others 1998). 
 Another major mechanism of biological control by 
nonpathogenic F. oxysporum strains is competition with 
pathogens (Mandeel and Baker 1991). Competition usually 
involves nutrients required by both pathogens and non-
pathogens and infection sites (niches) that may be common 
for both groups of organisms (Schneider 1984; Alabouvette 
and others 1993; Guillino and others 1995; Fuchs and oth-
ers 1999; Cotxarrea and others 2002; Freeman and others 
2002; Fravel and others 2003; Bolwerk and others 2005). If 
most available nutrients are initially utilized by nonpatho-
gens, they become limiting to pathogens and subsequently 
reduce pathogen development (Steinberg and others 1999a; 
Fravel and others 2003). Likewise, if most infection sites 
are occupied by nonpathogens, pathogens cannot success-
fully infect hosts (Alabouvette and others 1993; Fravel and 
others 2003). This is especially true in plant roots (Fravel 
and others 2003; Bolwerk and others 2005). 
 Other related biocontrol mechanisms have also been 
identified. For example, nonpathogens can act as plant 
growth-promoting organisms, inducing plants to overcome 
effects of pathogens by rapid growth and development (Liu 
and others 1995; Koike and others 2001). Some nonpathogens 
can reduce pathogen metabolic activity (Duijff and others 
1999) and inhibit pathogen chlamydospores germination 
(Fravel and others 2003) within soil.
 Studies have thus far failed to identify antibiosis (pro-
duction of antibiotic chemicals) (Fravel and others 2003; 
Bolwerk and others 2005) and mycoparasitism (one fungus 
parasitizing another fungus) (Bolwerk and others 2005) as 
mechanisms of biological control exhibited by nonpatho-
genic strains of F. oxysporum. Such mechanisms have been 
reported, however, for other biological control agents that 
may be effective against pathogenic strains of Fusarium, 
including several bacteria (Lemanceu and Alabouvette 1991; 
Hervas and others 1997; Hervas and others 1998; Larkin 
and Fravel 1998; Duijff and others 1999; Bapat and Shah 
2000; Bora and others 2004) and fungi (Hock and Fuller 
1977; Hervas and others 1998; Larkin and Fravel 1998; De 
Cal and others 2000; Cotxarrera and others 2002; Harveson 
and others 2002). Also, at least one strain of F. oxysporum 
has been identified as a mycoparasite against other fungi 
(Vajna 1985); another strain effectively infects and kills 
soilborne nematodes (Mennan and others 2005). In many 
cases, several different modes of action have been identi-
fied in plant disease biocontrol systems (James and others 
1993). 
 Several organisms other than nonpathogenic F. oxysporum 
have been tested for biocontrol efficacy of Fusarium diseases 
in forest nurseries (Dumroese and others 1996, 1998; Mous-
seaux and others 1998; James 2000). Unfortunately, not all 
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of these agents have performed satisfactorily in controlled 
greenhouse tests. One reason may be that most commercial 
biocontrol agents have been developed for use on specific 
agricultural crops and may not be effective on forest nursery 
seedlings. Thus, efficacy on a wide range of very different 
plants may be limited because biocontrol strains are not read-
ily adapted to particular plants or cropping systems (Fravel 
and others 2003). This same limitation may apply to some 
nonpathogenic strains of F. oxysporum, particularly those 
initially isolated from agricultural soil or the rhizosphere 
of annual crop plants. 
 Nonpathogenic F. oxysporum strains might exert more 
specific biocontrol against pathogenic Fusarium because 
they occupy the same niches, compete for the same nutrients, 
and use the same root infection sites. Therefore, if the plant 
growing environment is initially occupied by nonpathogenic 
strains, pathogenic strains will have difficulty becoming 
established or causing plant infection (Alabouvette and 
others 1993; Fuchs and others 1999). Unfortunately, some 
studies have indicated that much higher populations of 
nonpathogenic strains must be present to effectively restrict 
pathogens (Alabouvette and others 1993; Larkin and Fravel 
1999; Fravel and others 2003; Bolwerk and others 2005). 
One way to enhance efficacy of nonpathogenic strains would 
be to combine them with specific fungicides which they can 
tolerate but pathogens cannot (Guillino and others 1995; Reid 
and others 2002; Fravel and others 2005). Another way is to 
mix nonpathogenic strains of F. oxysporum with bacteria to 
enhance biocontrol efficacy (Park and others 1988; Olivain 
and others 2004).

Testing Nonpathogenic F. oxysporum 
as Biological Control in  
Forest Nurseries _______________
 Based on the potential of nonpathogenic strains of F. ox-
ysporum to control plant diseases and their relative safety in 
crop production (Guillino and others 1995), we have initiated 
a study to evaluate the potential of three selected strains 
to control root disease of container Douglas-fir seedlings. 
Our test is also designed to evaluate effects of another po-
tential biological control agent (Bacillus subtilis GB03) on 
disease. 
 We selected three strains of F. oxysporum that were non-
pathogenic in previous tests (James and others 2000). These 
isolates were also genetically differentiated from pathogenic 
isolates on the basis of AFLPs (Stewart and others 2004, 
2005, 2006). One isolate (Q-12) was initially obtained from 
the roots of a diseased western white pine seedling, another 
(Q-76) from the roots of a healthy appearing western white 
pine seedling, and the last isolate (Q-103) from the roots of a 
diseased Douglas-fir seedling. These isolates will be incorpo-
rated singly or in combination into peat-based growing media. 
Douglas-fir seeds will be germinated on, and seedlings grown 
within, inoculated media. After 10 weeks, selected seedlings 
will be transplanted into media amended with an inoculum 
of a highly-virulent isolate from the F. oxysporum complex, 
which was previously identified in controlled pathogenicity 
tests (James and others 2000) and is recognized by some as 
F. commune (Stewart and others 2006). Efficacy of the three 
tested nonpathogenic F. oxysporum strains and Bacillus  

subtilis GB03 to control root disease caused by highly virulent 
isolates from the F. oxysporum complex will be evaluated. 
If one or more of the nonpathogenic F. oxysporum strains 
exhibit biocontrol potential, further tests will be conducted 
on other Fusarium pathogens, particularly F. proliferatum, a 
common aggressive pathogen of container seedlings (James 
and others 1997).
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