

Nutrition and Fertilization: PPM vs. Millimoles

Eric van Steenis Nursery Extension Services, B.C. Ministry of Forests

Introduction

Current convention in fertilizer application familiar to most of us is PPM or "parts per million". It is a calculation based on the weight of one substance in relation to another with which it is mixed or associated. An example of one (1) PPM would be 1 gram/1000 kilograms (1 gram/1,000,000 grams).

Thus, a PPM of anything is equal to one part of it (by weight) to one million parts (by weight) of something else. In our case it is usually grams of a particular nutrient relative to grams of water. Water is particularly useful in this case because it weighs 1 gram/milliliter or 1 kilogram per liter. Hence 1 gram of a nutrient dissolved in 1000 liters of water equals 1 PPM (1g/1000L x 1000g/L = 1g/1,000,000g).

From the grower's perspective this convention works fine because it relates directly to the fertilizer mixing process, which requires weighing out specific fertilizer amounts and adding them to water. Hence, thinking of feeding nutrients in ppm sized portions keeps things in perspective. Moving onward, one would assume that 1 PPM of calcium and 1 PPM of magnesium mixed together equals a 1:1 Ca:Mg feeding regime. This is true on a weight basis but lets look at it from the plant's perspective.

Millimoles...

Plants take up nutrients on an individual ion, atom, or molecule basis, i.e. one calcium or magnesium atom at a time. Since these individual entities are so extremely small a very large standardized quantity was devised to allow their mass to be more easily measured and compared. The "mole" was chosen. A "mole" is a standardized quantity = 6.02×10^{23} items, just as a "dozen" is a standardized quantity = 12 items. "Milli" means 1/1000th hence a millimole (mmole) is 1/1000th of a mole.

To help grasp the concept better one must revisit the periodic table of elements. Here, one finds that calcium and magnesium have atomic weights of 40 and 24 grams, respectively. This means that 1 mole of calcium atoms weighs 40 grams, and 1 mole of magnesium atoms weighs 24 grams. It thus follows that calcium atoms are 1.67 times as heavy as magnesium atoms! So when a grower is feeding equal proportions of Ca and Mg on a PPM (weight) basis he/she is actually feeding 1.67 times as many Mg atoms as Ca atoms! In a similar vein, if a farm has a lonely one pound chicken roaming around among 1000 (1000lb each) steers, then the concentration of chickens to steers

is 1/1000. On a weight basis the farm would have one pound of chickens per million pounds of steers, or 1 ppm of chickens.

When attempting to sort out competition effects, ionic balance, or just set up nutrient feeding ratios, the above can have serious implications. A way to address this is to look at nutrient application rates on a concentration instead of a weight basis, i.e. use relative molar ratios of nutrients. Concentration is normally expressed on a per liter basis, hence a solution containing 40 grams of calcium/liter is a 1 molar solution. Similarly, a solution containing 24 grams of magnesium/liter is also a 1 molar solution. Both solutions have the same nutrient <u>concentration</u>, although containing different <u>weights</u> of the respective nutrients.

Molecules...

Another difficulty with PPM can arise when the nutrient is taken up as part of a larger molecule or ion. This is because molecular weight is the sum of constituent atomic weights. Let's take for example silicon (Si), taken up by the plant in the form of SiO_2 .

In Table 1, part of the <u>weight</u> contained in the "ppm" application of SiO_2 is the pair of oxygen atoms. Consequently, it takes a lower <u>number</u> of SiO_2 molecules to make up a 100 ppm feed. When feeding on a <u>concentration</u> basis (4 mmoles), the <u>number</u> of Si atoms supplied is the same in both regimes (Si and SiO_2). It takes 1 mole of silicon and 2 moles of oxygen to make 1 mole of SiO_2 . The atomic weights of silicon and oxygen are 28 g/mole and 16 g/mole respectively, hence the total of 60 g/mole.

Table 1: Silicon application rate comparison

Form	Grams/mole*	Application rate	Actual Silicon fed/liter H_20
Si	28	100 ppm	0.100 grams (3.57 mmoles)
Si02	60	100 ppm	0.047 grams (1.67 mmoles)
Si	28	4 mmoles	0.112 grams
Si02	60	4 mmoles	0.112 grams

* obtained from periodic table

To prevent confusion and/or improper application rates, it is important to specify the exact form of the nutrient that the fertilizer schedule refers to. Similar misunderstandings can come about when working with P_2O_5 vs P, or K_2O vs K application rates.

Conversion of PPM to Millimoles... use the following formula...

	<u>PPM</u> Nutrient feed	= mmoles of nutrient/liter H_20
Atomi	c or Molecular Weight of Nutrient	
e.g.	PPM Calcium feed	= mmoles of calcium/liter H_2^0
	40	

If the nutrient is supplied as part of a molecule, multiply by the number of nutrient atoms in the molecule.

e.g. PPM P_20_5 feed x 2 = mmoles of phosphorus (P)/liter H_20 MW of $P_20_5^{**}$

** molecular weight of $P_20_5 = 142$ grams

Table 2 shows the difference between the two conventions. The ppm column tells us that for every 100 grams of N supplied the solution is supplying 21.8 grams of P, 81.3 grams of K, 43.8 grams of Ca, etc.

The atomic ratio column is basically the ppm column, but adjusted so that quantities of nutrient elements are set relative to a standard of 100 nitrogen atoms to reduce confusion with decimal places and to see the relationships more clearly. It tells us that for every 100 N <u>atoms</u> supplied the nutrient solution supplies 10 P <u>atoms</u>, 29 K <u>atoms</u>, 15 Ca <u>atoms</u>, etc.

Working with ppm one might assume that the N/P feeding ratio is approximately 5:1 whereas from the plant's perspective on an atomic basis, it

Element	Symbol	PPM	Mmoles (per liter)	Atomic ratio (per 100 N atoms)
Nitrogen	N	100	7.14	100
Phosphorus	Р	21.8	0.70	1 0
Potassium	к	81.3	2.08	29
Calcium	Ca	43.8	1.09	15
Magnesium	Mg	15.1	0.62	9
Sulphur	S	19.5	0.61	9
Iron	Fe	1.78	0.0319	0.45
Zinc	Zn	0.25	0.0038	0.05
Copper	Cu	0.40	0.0063	0.09
Manganese	Mn	0.25	0.0045	0.06
Boron	В	0.28	0.0259	0.36
Molybdenum	Мо	0.01	0.0001	0.002

Table 2. Sample conversion of PPM to mmoles using a general conifer seedling grower formulation for peat-based container culture (soluble application).

is actually 10:1. This is because phosphorus atoms weigh much more than nitrogen atoms. Similarly, the N/Zn ratio is 400:1 on a weight basis and 2000:1 on a concentration basis.

Table 3 compares concentrations of nutrients at a constant 100 ppm feeding rate. It shows how the atomic weights of the various elements, as well as the form in which they are supplied or taken up, affect the actual amounts available to the plants.

The choice of convention is up to the grower. To make calculations easier and less prone to error a simple spreadsheet can be made up using conventional software.

Element	Compound M	Atomic or Iolecular Weight	Symbol	Charge	Millimoles @ 100 ppm	Millimoles of nutrient element	ppm of nutrient element
Nitrogen		14.0	N		7.14	7.14	100.0
	Nitrate	62.0	NO3	1.2	1.61	1.61	22.5
	Ammonium	18.0	NH	+	5.56	5.56	77.9
Phosphorus		31.0	P		3.22	3.22	100.0
and the same of	Phosphate	97.0	H_POA	-	1.03	1.03	32.0
	Phosphate	96.0	HPO,	2-	1.04	1.04	32.3
	fert. equiv.	142.0	P.O.		0.70	1.41	43.8
Potassium		39.1	ĸ	+	2.56	2.56	100.0
	fert. equiv.	94.2	K,O		1.06	2.12	82.8
Calcium	SP COSSIL	40.1	Ca	2+	2.49	2.49	100.0
Magnesium		24.3	Mg	2+	4.12	4.12	100.0
Sulphur		32.1	S		3.12	3.12	100.0
	Sulphate	96.0	SO,	2-	1.04	1.04	33.3
Sodium	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	23.0	Na	+	4.35	4.35	100.0
Chlorine		35.4	CI		2.82	2.82	100.0
Iron		55.8	Fe	2+	1.79	1.79	100.0
		55.8	Fe	3+	1.79	1.79	100.0
	Chelates	343.5	Fe EDTA		0.29	0.29	16.2
		387.7	Fe DTPA		0.26	0.26	14.5
		614.0	Fe EDDHA		0.16	0.16	8.9
Zinc		65.4	Zn	2+	1.53	1.53	100.0
	ZincHydroxide	82.4	ZnOH	+	1.21	1.21	79.1
	ZincChloride	100.8	ZnCl	+	0.99	0.99	64.7
	Chelates	353.5	Zn EDTA		0.28	0.28	18.3
Copper		63.5	Cu	2+	1.57	1.57	100.0
	CopperHydroxi	de 80.5	CuOH	+	1.24	1.24	79.0
	Chelates	349.5	Cu EDTA		0.29	0.29	18.5
Molybdenum		95.9	Мо		1.04	1.04	100.0
	Molybdate	159.9	MoO,	2-	0.63	0.63	60.6
Manganese		54.9	Mn	2+	1.82	1.82	100.0
	Chelates	342.3	Mn EDTA		0.29	0.29	15.9
Boron	Construction of the second	10.8	В		9.26	9.26	100.0
Zinc Copper Molybdenum Manganese Boron	Borate	61.8	H.BO.		1.62	1.62	17.5

The following spreadsheets are constructed in Microsoft Excel 5.0. They basically allow one to formulate fertilizer programs without having to worry about doing the math. The fertilizers listed are commonly used in B.C. forest nurseries.

To use the sheet first set the appropriate injector ratio and concentrate mixing bin size. Then input desired fertilizer amounts in the g/1000L (or ounces/100USG) column and watch the corresponding fertilizer regime in ppm and mmoles appear in the table on the right. The sheet will also indicate how much bulk fertilizer to add to the concentrate bin(s) to effect the nutrient regime chosen. Be aware that you may not be able to mix all fertilizers in one concentrate bin.

FERTILIZER Eric van Steenis July 18, 1997	Rate in grams/	Kg FERT/ 200 Ltr Concentrate		FINAL NUTRIENT REGIME IN			Feeding Rate Per 100 N		
Version	1000L @ sprinkler	@ 1: Injectio	200 n Ratio	x	:	PPM	4	mmoles	atoms
PlantP 12-17-29F	200		8	NO3-N	÷	75.0	:	5.36	75
PlantP 20-8-20F	0	=	0	NH4-N	2	24.9	1	1.78	25
PP*NO3* 20-8-20F	200	=	8	N (t)	:	100.0	- 1	7.14	100
PlantP 8-20-30F	0	=	0	P	2	21.8	- 7	0.70	10
PlantP 11-41-8F	0	(1 ± 1)	0	к	2	81.3	1	2.08	29
PlantP 20-20-20	0	(E)	0	Ca	:	43.8	\$	1.09	15
Excel 21-5-20	0	-	0	Mg	;	15.1	;	0.62	9
Excel 15-5-15	0	=	0	S	4	19.5		0.61	9
Excel Mg(NO3)2	0	=	0	Fe	:	1.78	:	0.0319	0.45
Excel Ca(NO3)2	0	=	0	Mn	3	0.25	1	0.0045	0.06
Ca(NO3)2 15.5-0-0	232	=	9.28	Zn	:	0.25	5	0.0038	0.05
KNO3 13-0-46	0	=	0	Cu	1	0.40	:	0.0063	0.09
NH4NO3 34-0-0	0	=	0	В	1	0.28		0.0259	0.36
KH2PO4 0-52-34	0	÷	0	Mo	1	0.01	:	0.0001	0.002
MgSO4	150	-	6	Si	\$	0.0	1	0.00	0.00
K2SO4 0-0-50	0	=	0	HCO3	1	0.0		0.00	0.00
(NH4)2SO4 21-0-0	0	=	0	CaCO	3:	0.0	4	0.00	0.00
(NH4)2HPO4 21-53-0	0	=	0	Na	1	0.0	1	0.00	0.00
ZnSO4 35%	0	= 0	0.000.						
CuSO4 24%	0	= 0	0.000.0						
FeSO4 21%	0	= 0	0.000.						
Fe Chelate 13.2%	0	= 0	0.000	P2O5		50.0	3	0.35	
Plant Prod Micro	0	= 0	0.000	K20		98.0	:	1.04	
Na Molybdate	0	= 0	000			e e re			
STEM	0	= 0	000						
SOLUBOR	0	- 0	000	H		0.00		0.00	
	0	- 0.000	1.000	117		0.00		0.00	
H0004 100% UN1000	0								
H2504 100% UN1830	0	mi = 0.000		1.202.00					
H2SO4 36% SG1.265	0	ml = 0.000	Ltr	Aquagro	D :	0.0	1	Active Ing	redient
HNO3acid67%SG1.4078	0	ml = 0.000) Ltr	2000L				Only	
Silicon K2SiO2	0	ml = 0.000) Ltr						
Aquagro 2000L (85%)	0	ml = 0.000) Ltr						

FERTILIZER Eric van Steenis	Rate in a/1000	e Kg FERT/ 200 Ltr 201 concentrate @ 1 : 200 injection ratio		FINAL NUTRIENT REGIME X : ppm			ling Per N	
May 15, '97 version						:	mmoles	atoms
TANK "A"		-	100	13.2	6.0		337.	
Ca(NO3)2 15.5-0-0	0	=	0	NO3-N	0.0	1	0.00	####
CaCl2	0	=	0	NH4-N	0.0	:	0.00	####
Mg(NO3)2	0	=	0					
KNO3 13-0-46	0	=	0	N (t)	0.0	2	0.00	####
NH4NO3 34-0-0	0	-	0	Р	0.0	1	0.00	####
Fe DTPA 7%	Ö	=	0	к	0.0	d,	0.00	####
TANK "B"			1.0	Ca	0.0		0.00	####
KNO3 13-0-46	0	=	0	Mg	0.0		0.00	####
KH2PO4 0-52-34	0	-	0	SO4-S	0.0	:	0.00	####
K2SO4 0-0-50	0	-	0	CI -1	0.0	2	0.00	####
MgSO4-7H2O	0	=	0				0	
MgSO4-1H2O	0	=	0	Na	0.0	:	0.00	####
Mg EDTA 5.8%	0	=	0	Si	0.0	:	0.00	####
KCI 0-0-62	0	=	0					
(NH4)2SO4 21-0-0	0	-	0	P205	0.0		0.00	
(NH4)2HPO4 21-53-0	õ	-	0	K20	0.0		0.00	
(NH4)H2PO4 12-61-0	õ	-	0	THE O	0.0		0.00	
Silicon/H4SiO4	0	-	0	HCO3	0.0	+	0.00	####
	-			CaCO3	0.0		0.00	####
				EDTA	0.0		0.00	####
ZnSO4 35%	0	=	0.000	DTPA	0.0		0.00	####
CuSO4 24%	0	=	0.000					
FeSO4 21%	0	=	0.000		ppm		umoles	
MnSO4 29.5%	0	=	0.000	Fe	0.00	2	0.00	####
Fe EDTA 13.2%	0	=	0.000	Mn	0.00	:	0.00	####
Fe DTPA 7%	0	=	0.000	Zn	0.00	:	0.00	####
Cu EDTA 14%	0	=	0.000	Cu	0.00	:	0.00	####
Mn EDTA 13%	0	=	0.000	В	0.00	:	0.00	####
Zn EDTA 14%	0	=	0.000	Mo	0.00	:	0.00	####
Na Molybdate	0	=	0.000	AI	0.00	:	0.00	####
SOLUBOR	0	=	0.000					
Boric Acid (Borax)	0	=	0.000		ppm		mmoles	
Plant Prod Micro	0	=	0.000	H+	0.00	:	0.00	####
STEM	0	=	0.000	OH-	0.00	3	0.00	####
pH Adjusters					lon	ic B	alance	
Ca(OH)2	0	=	0.00	-ve charg	es	:	0.00	
кон	Ō	=	0.00	+ve charc	jes		0.00	
КНСОЗ	0	=	0.00				100	
H3PO4 85% SG1.75	0	ml =	0.00 Ltr	Calculate	dEC	:	0.00	umho
H3PO4 75%	0	ml =	0.00 Ltr	Raw wate	er EC		0.00	umho
H2SO4 100% UN1830	õ	ml =	0.00 Lt	· · · · · · · · · · · · · · · · · · ·	0.00	-		
H2SO4 36% SG1.265	õ	ml =	0.00 Ltr	Total E	С		0.00	umhor
HNO32014 67% SC1 4079	õ	ml -	0.001tr	IUIAILO				

L

Diskettes containing the spreadsheets can be obtained from Eric van Steenis at B.C. Forest Service, 14275 96th Avenue, Surrey, B.C., V3V 7Z2 Canada.

References

Weast, Robert C. 1976. Handbook of Chemistry and Physics. CRC Press, Cleveland, Ohio.

Marshner, H. 1989. Mineral Nutrition of Higher Plants. Academic Press, San Diego, CA.