# NEW SYSTEM WILL LOCALIZE AND INTERPRET WEATHER INFORMATION FOR NURSERYMEN

James T. Paul 1/

<u>Abstract.--A</u> system for storing and retrieving weather data is being developed to provide localized and specialized forecasts and information, for forestry problems. The general operation of the system, user decision models, and a sample user interaction with the system are included.

#### INTRODUCTION

The U. S. Forest Service, National Weather Service, the Georgia Forest Research Council, various Southern State Forestry organizations, and private industry are cooperating in a 2-year experimental weather program for the forestry community. The objective is to provide localized weather information and forecasts that help solve a wide range of forestry problems from fire to nursery practice. The system will store and retrieve weather data, interpolate between weather stations, and apply user decision models to provide the necessary special information. This paper describes the system and those components that have specific application to nursery practices. A model that gives the probability of fusiform rust infection at a specific time and place should be especially useful to nurserymen.

The system will be monitored and operated by National Weather Service (NWS) and Forest Service meteorologists at Macon who will work closely with the NWS forestry focal point forecaster in each state. In addition, the NWS meteorologist at Macon will develop a training plan for forestry focal point forecasters that will enhance their understanding of forestry's special weather requirements. The system will be designed jointly by the University of Georgia Center for Computing Activities and the Forest Service.

### PRIMARY DATA FLOW

Figure 1 shows how data flow through the system. Two IBM 1620 computers at the Southern Forest Fire Laboratory at Macon, Georgia, are used for acquiring data, for initial editing, and, in conjunction with other remote terminals used by meteorologists at Macon, for monitoring, updating, and verifying system operation. Data from National Weather Service (NWS) airways stations (fig. 2 and table 1) enter the 1620 from a teletype line each hour. The data are filtered, reformatted, and partially edited before transmission to a CDC CYBER-74 computer at the University of Georgia, where the data pass through a final editing routine before storage on a random access disk. Data

<sup>&</sup>lt;u>1/</u>Research Forester/Meteorologist, Southern Forest Fire Laboratory, Southeastern Forest Experiment Station, USDA Forest Service, Macon, Ga.



- 1/ Either 1620 can acquire data. If the data acquisition computer is down, the analysis
  1620 will be switched on to acquire incoming data.
- 2/ The edited data, interpolation and user programs will be on disks at University of Georgia and Georgia Tech. If University of Georgia is down, the user will be automatically switched to Georgia Tech.

Figure 1.--Basic data flow.



SCALE 1:10.000,000 POLAR STICIUMPAI<sup>P</sup>HIC PROJECTION, TIM AT LATITUDIIP'

Figure 2.--National Weather Service weather stations used in the system (see table 1 for explanation of station identifiers).

| Station    | Station  |          |           | Station   | Station name           |
|------------|----------|----------|-----------|-----------|------------------------|
| identifier | number   | Latitude | Longitude | elevation | and location           |
|            |          |          |           |           |                        |
| AGS        | 1        | 33.369   | 81.967    | 148       | Augusta, Ga.           |
| AHN        | 2        | 33.949   | 83.327    | 811       | Athens, Ga.            |
| CSG        | 3        | 32.516   | 84.939    | 394       | Columbus, Ga.          |
| DAB        | 4        | 29.181   | 81.056    | 35        | Daytona Beach, Fla.    |
| TPA        | 5        | 27.967   | 82.533    | 11        | Tampa, Fla.            |
| PBI        | 6        | 26.683   | 80.100    | 19        | West Palm Beach, Fla.  |
| CTY        | 7        | 29.633   | 83.100    | 42        | Cross City, Fla.       |
| RMG        | 8        | 34.349   | 85.159    | 643       | Rome, Ga.              |
| FTY        | 9        | 33.779   | 84.521    | 844       | Charlie Brown Airport, |
|            |          |          |           |           | Atlanta, Ga.           |
| ATL        | 10       | 33.642   | 84.426    | 1034      | Hartsfield Airport,    |
|            |          |          |           |           | Atlanta, Ga.           |
| MCN        | 11       | 32.710   | 83.648    | 362       | Macon, Ga.             |
| ABY        | 12       | 31.535   | 84.195    | 193       | Albany, Ga.            |
| SAV        | 13       | 32.128   | 81.200    | 51        | Savannah, Ga.          |
| SSI        | 1)4      | 31.151   | 81.389    | 24        | St. Simons Island, Ga. |
| VLD        | 15       | 30.763   | 83.279    | 223       | Valdosta, Ga.          |
| TLH        | 16       | 30.400   | 84.356    | 68        | Tallahassee, Fla.      |
| JAX        | 17       | 30.492   | 81.690    | 31        | Jacksonville, Fla.     |
| GNV        | 18       | 29.689   | 82.274    | 165       | Gainesville, Fla.      |
| MCO        | 19       | 28.433   | 81.317    | 106       | Orlando, Fla.          |
| MLB        | 20       | 28.100   | 80.633    | 27        | Melbourne, Fla.        |
| VRB        | 21       | 27.650   | 80.417    | 28        | Vero Beach, Fla.       |
| PIE        | 22       | 27.917   | 82.683    | 11        | Pinellas County        |
|            |          |          |           |           | Airport, Fla.          |
| FMY        | 23       | 26.583   | 81.867    | 12        | Fort Myers, Fla.       |
| FLL        | 24       | 26.067   | 80.150    | 10        | Fort Lauderdale, Fla.  |
| MIA        | 25       | 25.800   | 80.267    | 12        | Miami, Fla.            |
| EYW        | 26       | 24.550   | 81.750    | 21        | Key West, Fla.         |
| CEW        | 27       | 30.780   | 86.522    | 185       | Crestview, Fla.        |
| PNS        | 28       | 30.333   | 87.300    | 32        | Pensacola, Fla.        |
| ANB        | 29       | 33.583   | 85.850    | 618       | Anniston, Ala.         |
| BHM        | 30       | 33.563   | 86.756    | 630       | Birmingham, Ala.       |
| DUN        | 31       | 31.317   | 85.450    | 353       | Dothan, Ala.           |
| HSV        | 32       | 34.643   | 86.776    | 644       | Huntsville, Ala.       |
| MGM        | 33       | 32.300   | 86.393    | 221       | Montgomery, Ala.       |
| MOB        | 34       | 30.683   | 88.250    | 202       | Mobile, Ala.           |
| MSL        | 35       | 34.746   | 87.611    | 562       | Muscle Shoals, Ala.    |
| TCL        | 36       | 33.221   | 87.611    | 186       | Tuscaloosa, Ala.       |
|            |          | 36.127   | 86.682    | 605       | Nashville, Tenn.       |
| BNA        | 37<br>38 | 35.036   | 85.204    | 688       | Chattanooga, Tenn.     |
| CHA        | 38<br>39 | 35.951   | 85.085    | 1870      | Crossville, Tenn.      |
| CSV        |          |          | 89.979    | 284       | Memphis, Tenn.         |
| MEM        | 40       | 35.050   | 07.777    | 204       | memphits, tenn.        |

# Table <u>1.--Station directory</u>

Table 1 (con.)

| Station    | Station |          |           | Station   | Station name                 |
|------------|---------|----------|-----------|-----------|------------------------------|
| identifier | number  | Latitude | Longitude | elevation | and location                 |
|            |         |          |           |           |                              |
| NIKE       | 41      | 35.600   | 88.917    | 422       | Jackson, Tenn.               |
| TRI        | 42      | 36.476   | 82.406    | 1525      | Bristol, Tenn.               |
| TYS        | 43      | 35.812   | 83.992    | 980       | Knoxville, Tenn.             |
| GWO        | 44      | 33.500   | 90.083    | 133       | Greenwood, Miss.             |
| JAN        | 45      | 32.317   | 90.083    | 331       | Jackson, Miss.               |
| MCB        | 46      | 31.183   | 90.467    | 422       | McComb, Miss.                |
| MEI        | 47      | 32.333   | 88.751    | 310       | Meridian, Miss.              |
| AND        | 48      | 34.495   | 82.708    | 773       | Anderson, S.C.               |
| CAE        | 49      | 33.941   | 81.120    | 225       | Columbia, S.C.               |
| CHS        | 50      | 32.899   | 80.038    | 48        | Charleston, S.C.             |
| FLO        | 51      | 34.188   | 79.724    | 151       | Florence, S.C.               |
| GSP        | 52      | 34.900   | 82.218    | 971       | Greenville-Spartanburg, S.C. |
| AVL        | 53      | 35.434   | 82.540    | 2170      | Asheville, N.C.              |
| CLT        | 54      | 35.215   | 80.938    | 769       | Charlotte, N.C.              |
| EWN        | 55      | 35.085   | 77.050    | 24        | New Bern, N.C.               |
| FAY        | 56      | 35.000   | 78.883    | 196       | Fayetteville, N.C.           |
| GSO        | 57      | 36.085   | 79.941    | 886       | Greensboro, N.C.             |
| HAT        | 58      | 35.267   | 75.555    | 11        | Hatteras, N.C.               |
| HKY        | 59      | 35.740   | 81.391    | 1188      | Hickory, N.C.                |
| ILM        | 60      | 34.274   | 77.917    | 38        | Wilmington, N.C.             |
| INT        | 61      | 36.128   | 80.233    | 978       | Winston-Salem, N.C.          |
| RDU        | 62      | 35.867   | 78.783    | 441       | Raleigh, N.C.                |
| RWI        | 63      | 35.850   | 77.883    | 158       | Rocky-Mount-Wilson, N.C.     |
| BTR        | 64      | 30.535   | 91.150    | 76        | Baton Rouge, La.             |
| ESF        | 65      | 31.400   | 92.300    | 118       | Alexandria, La.              |
| LCH        | 66      | 30.120   | 93.217    | 32        | Lake Charles, La.            |
| LFT        | 67      | 30.200   | 91.992    | 42        | Lafayette, La.               |
| MLU        | 68      | 32.517   | 92.050    | 81        | Monroe, La.                  |
| MSY        | 69      | 29.992   | 90.250    | 30        | New Orleans, La.             |
| SHV        | 70      | 32.467   | 93.817    | 259       | Shreveport, La.              |
| ETD        | 71      | 33.217   | 92.800    | 285       | El Dorado, Ark.              |
| FSM        | 72      | 35.333   | 94.367    | 463       | Fort Smith, Ark.             |
| HRO        | 73      | 36.267   | 93.150    | 1385      | Harrison, Ark.               |
| LIT        | 74      | 34.733   | 92.233    | 265       | Little Rock, Ark.            |
| TXK        | 75      | 33.450   | 94.000    | 399       | Texarkana, Ark.              |
| BWG        | 76      | 36.967   | 86.433    | 536       | Bowling Green, Ky.           |
| LEX        | 77      | 38.033   | 84.600    | 989       | Lexington, Ky.               |
| LOZ        | 78      | 37.083   | 84.083    | 1211      | London, Ky.                  |
| PAH        | 79      | 37.066   | 88.767    | 413       | Paducah, Ky.                 |
| SDF        | 80      | 38.183   | 85.733    | 488       | Louisville, Ky.              |
| CVG        | 81      | 39.050   | 84.667    | 877       | Covington, Ky.               |
| BLF        | 82      | 37.300   | 81.217    | 2867      | Bluefield, W. Va.            |
| DCA        | 83      | 38.850   | 77.033    | 65        | Washington, D.C.             |
| СНО        | 84      | 38.133   | 78.450    | 644       | Charlottesville, Va.         |

# Table 1 (con.)

| Station    | Station |          |           | Station   | Station name             |  |
|------------|---------|----------|-----------|-----------|--------------------------|--|
| identifier | number  | Latitude | Longitude | elevation | and location             |  |
|            |         |          | 2         |           |                          |  |
| DAN        | 85      | 36.567   | 79.333    | 59 0      | Danville, Va.            |  |
| IAD        | 86      | 38.950   | 77.450    | 323       | Dulles Int'l. Airport,   |  |
|            |         |          |           |           | Va.                      |  |
| LYH        | 87      | 37.333   | 79.200    | 937       | Lynchburg, Va.           |  |
| ORF        | 88      | 36.900   | 76.200    | 30        | Norfolk, Va.             |  |
| PHF        | 89      | 37.133   | 76.500    | 51        | Newport <i>News,</i> Va. |  |
| RIC        | 90      | 37.500   | 77.333    | 177       | Richmond, Va.            |  |
| R OA       | 91      | 37.317   | 79.967    | 1176      | Roanoke, Va.             |  |
| ABI        | 92      | 32.416   | 99.683    | 1790      | Abilene, Texas           |  |
| ACT        | 93      | 31.616   | 97.217    | 508       | Waco, Texas              |  |
| AMA        | 94      | 35.233   | 101.690   | 3604      | Amarillo, Texas          |  |
| AUS        | 95      | 30.300   | 97.690    | 621       | Austin, Texas            |  |
| DFW        | 96      | 32.899   | 97.038    | 596       | Fort Worth/Dallas        |  |
|            |         |          |           |           | (DFW Airport), Texas     |  |
| CRP        | 97      | 27.776   | 97.500    | 44        | Corpus Christi, Texas    |  |
| BRO        | 98      | 25.900   | 97.433    | 20        | Brownsville, Texas       |  |
| GLS        | 99      | 29.300   | 94.800    | 54        | Galveston, Texas         |  |
| HOU        | 100     | 29.642   | 95.279    | 62        | Houston, Texas           |  |
| SAT        | 101     | 29.535   | 98.467    | 794       | San Antonio, Texas       |  |
| ELP        | 102     | 31.800   | 106.400   | 3916      | El Paso, Texas           |  |
| OKC        | 103     | 35.400   | 97.600    | 130 4     | Oklahoma City, Okla.     |  |
| TUL        | 104     | 36.200   | 95.900    | 676       | Tulsa, Okla.             |  |
| HST        | 201     | 25.476   | 80.400    | 7         | Homestead AFB, Fla.      |  |
| CBM        | 202     | 33.650   | 88.450    | 214       | Columbus AFB, Miss.      |  |
| BIX        | 203     | 30.416   | 88.917    | 18        | Keesler AFB, Miss.       |  |
| MCF        | 204     | 27.850   | 82.517    | 13        | MacDill AFB, Fla.        |  |
| MGE        | 205     | 33.916   | 84.517    | 1068      | Dobbins AFB, Ga.         |  |
| MYR        | 206     | 33.683   | 78.939    | 25        | Myrtle Beach AFB, S.C.   |  |
| NBC        | 207     | 32.483   | 80.708    | 38        | MCAS Beaufort, S.C.      |  |
| NSE        | 208     | 30.729   | 87.017    | 200       | NAS Whiting, Fla.        |  |
| NZC        | 209     | 30.217   | 81.883    | 80        | NAS Cecil, Fla.          |  |
| OZR        | 210     | 31.267   | 85.717    | 305       | Fort Rucker, Ala.        |  |
| PAM        | 211     | 30.067   | 85.583    | 18        | Tyndall AFB, Fla.        |  |
| POB        | 212     | 35.159   | 79.017    | 218       | Pope AFB, N.C.           |  |
| S SC       | 213     | 33.967   | 80.467    | 241       | Shaw AFB, S.C.           |  |
| SEM        | 214     | 32.333   | 86.983    | 166       | Craig AFB, Ala.          |  |
| VAD        | 215     | 30.967   | 83.204    | 233       | Moody AFB, Ga.           |  |
| VPS        | 216     | 30.476   | 86.535    | 85        | Eglin AFB, Fla.          |  |
| WRB        | 217     | 32.633   | 83.600    | 294       | Robins AFB, Ga.          |  |
| NIP        | 218     | 30.233   | 81.683    | 22        | NAS Jacksonville, Fla.   |  |

transmitted to the University of Georgia will include both observations and forecasts derived and supplemented from NWS products. Both the 1620 in Macon and the CYBER-74 in Athens will have a backup in case one of the primary computers breaks down. In Macon the "monitoring" 1620 would then be used for data acquisition and a second CYBER-74, probably at Georgia Tech in Atlanta, would be used as a backup to the CYBER-74 in Athens. Thus, users should always be able to obtain the data and forecasts needed.

# USER DECISION MODELS

The system will provide the following information of special interest to nurserymen:

## <u>Region</u>

A southern weather summary with parts as follows:

<u>Part A.--A</u> discussion of existing and expected weather patterns across the South drawn from existing NWS products and reformatted for the system.

Part B.--An interpretation of the impact of existing weather patterns on forest operations.

# <u>State</u>

A forecast prepared by the Weather Service Forecast Office (WSFO) in each state with parts as follows:

Part A.--A forecast of important weather parameters (temperature, dewpoint, windspeed, wind direction, precipitation, mixing height, etc.) for each state by zones.

Part B.--A proposed addition to the current forestry state forecasts which would discuss, by zones, the weather impact on forestry operations as in Part B of Region.

Format and content may vary from state to state depending on what forest users and NWS state forecast office agree is appropriate.

# SPOTO-A

Uses current weather plus a combination of automatically and manually entered forecast data to provide a statement of current conditions plus expected conditions in increments of 3 hours up to 24 hours for a given latitude and longitude. Statement includes surface windspeed, relative humidity, fire danger rating, transport windspeed, and stability interpreted for burning, nursery, spraying, and harvesting operations according to seasons.

#### RUSTY

Incorporates site factors, presence or absence of infectious spores, and existing and forecast weather to predict probability (negligible, low, moderate, high) of seedling infection at a nursery or plantation by fusiform rust.

# MIRE

Provides a 5-day outlook of the likely occurrence of precipitation that would make soils unworkable for equipment.

#### USER SYSTEM INTERACTION

A computer terminal with a typewriter keyboard is needed to use the system. The terminal can be attached to a common office telephone line. A typical interchange expected between the CYBER-74 in Athens and a remote user is shown below. Rowan (block) letters denote information a user must supply, while the italicized letters represent information returned by the computer. To obtain the desired information, the user must answer a series of questions posed by the computer. For example, after dialing and establishing a successful link, the computer responds with the first two lines and asks for "USER NUMBER." On line three the user types Smokey, Owl, and the computer responds with additional output.

Time 1600 (User dials the computer)

76/03/09. 1600.24.01 UGA CYBER 74. NOS 1.1 - 419/420. USER NUMBER: Smo key, Owl TERMINAL: 53, TTY RECOVER/SYSTEM: Batch SSRF L, 30000. /LGO,I = WEASYS, L = 0 FOREST SERVICE/WEATHER SERVICE FOREST METEOROLOGICAL INTERPRETATION SYSTEM. THE DATE IS 9 MARCH 1976 1600 EST. REGION? Yes PART A - WEATHER Yes

REGIONAL SYNOPSIS PREPARED 1500 EST TUESDAY MARCH 9, 1976 SIGNIFICANT FEATURES TUESDAY PM

REGION DOMINATED BY SURFACE HIGH PRESSURE RIDGE FROM SOUTH TEXAS NORTHEASTWARD THROUGH WEST VIRGINIA. COLD FRONT MOVING SOUTHWARD THROUGH SOUTH FLORIDA. SURFACE LOW PRESSURE CENTER MOVING EASTWARD GREAT LAKES REGION WITH COLD FRONT MOVING SOUTHWARD INTO OHIO VALLEY.

#### SIGNIFICANT WEATHER FOR WEDNESDAY

UPPER LEVEL FLOW INDICATES EASTWARD PROGRESSION OF WEATHER FEATURES WITH LITTLE NORTH-SOUTH MOVEMENT. SURFACE COLD FRONT WILL REACH VIRGINIA-NORTH CAROLINA BORDER BECOMING QUASI-STATIONARY WESTWARD THROUGH KENTUCKY, MISSOURI, AND KANSAS, INTO DEVELOPING MAJOR STORM SYSTEM SOUTHEAST WYOMING. COLD FRONT MOVING EASTWARD FROM UTAH-CENTRAL CALIFORNIA. NORTH-SOUTH HIGH PRESSURE RIDGE MICHIGAN-TO-GEORGIA. QUASI-STATIONARY FRONT FLORIDA STRAITS TO SOUTH TEXAS.

#### OUTLOOK FOR THURSDAY

COLD FRONT MOVING SOUTHEASTWARD WESTERN PORTION OF REGION. SHIFTING WINDS AND THUNDERSTORM LINE ACTIVITY MOVING EASTWARD TO MISSISSIPPI RIVER. INCREASING SOUTHWESTERLY WINDS 15-25 MPH MISSISSIPPI, WEST TENNESSEE WESTWARD SHIFTING TO NORTHWEST TO NORTH BEHIND COLD FRONT, INCREASING RELATIVE HUMIDITY MOST AREAS. PRECIPITATION EXPECTED OVER MOST OF REGION BY FRIDAY MORNING.

PART B - WEATHER IMPACT?

Yes

#### FORESTRY OPERATIONS - SIGNIFICANT WEATHER - WEDNESDAY

FIRE DANGER - REMAIN LOW, LOW LEVEL WINDS LIGHT AND VARIABLE EAST OF MISSISSIPPI RIVER BECOMING SOUTHEASTERLY 10-20 MPH LOUISIANA AND ARKANSAS, SOUTHERLY 10-20 MPH TEXAS AND OKLAHOMA BECOMING 20-30 MPH DURING DAY. SOME DRYING OF FUELS CAROLINAS, GEORGIA, ALABAMA, AND MISSISSIPPI.

PRESCRIBED BURNING - APPEARS BEST WEST OF MISSISSIPPI RIVER WHERE LOW LEVEL WINDS ARE SUFFICIENT. POOR ELSEWHERE WHERE WINDS ARE LACKING.

SMOKE DISPERSION - SAME AS ABOVE, VERTICAL DISPERSION GOOD EAST OF MISSISSIPPI RIVER DURING AFTERNOON, HORIZONTAL DISPERSION POOR.

HARVESTING - CONDITIONS GOOD

PLANTING - CONDITIONS EXCELLENT

NURSERIES - CONDITIONS EXCELLENT

SPRAYING - CONDITIONS EXCELLENT EAST OF MISSISSIPPI RIVER, MARGINAL LOUISIANA AND ARKANSAS, POOR TEXAS AND OKLAHOMA DUE TO WINDS.

## OUTLOOK FOR THURSDAY

#### FIRE DANGER - LOW MOST AREAS

HARVESTING -\_ CONDITIONS GOOD FLORIDA, GEORGIA, CAROLINAS, VIRGINIA, SOUTHERN ALABAMA AND MISSISSIPPI. POOR ELSEWHERE DUE TO PRECIPITATION. CONDITIONS IMPROVING WESTERN PORTIONS OF REGION WHERE RAIN HAS STOPPED.

#### PLANTING - CONDITIONS EXCELLENT

NURSERIES - CONDITIONS EXCELLENT. FLORIDA PENINSULA WILL BE WATCHED FOR DEVELOPMENT OF FAVORABLE CONDITIONS OF TEMPERATURE, HUMIDITY, AND WIND FOR FUSIFORM INFECTION DURING WEEKEND.

SPRAYING - CONDITIONS BECOMING POOR MOST OF REGION DUE TO WINDS AND PRECIPITATION ACTIVITY.

SMOKE DISPERSION -\_GOOD

PRESCRIBED BURNING -\_GOOD FLORIDA, GEORGIA, CAROLINAS, MARGINAL ALABAMA AND MISSISSIPPI DUE TO SHOWER ACTIVITY.

STATE FORECAST?

Yes

A. FIRE WEATHER FORECAST FOR MISSISSIPPI ISSUED 0945 CST WEDNESDAY, MARCH 10, 1976.

TODAY AND TONIGHT (ALL ZONES) - CLEAR TO PARTLY CLOUDY. MAX TEMP 60'S. MAX RH 90 TO 100%. WIND MOSTLY SOUTH TO SOUTHEAST LESS THAN 3 MPH.

TOMORROW (ALL ZONES) - INCREASING CLOUDS. MAX TEMP 70'S. MIN RH 40%. WIND SOUTH TO SOUTHEAST LESS THAN 3 MPH INCREASING TO 10 to 15 MPH DURING DAY.

OUTLOOK -\_ RAIN AND SHOWERS DEVELOPING IN ADVANCE OF APPROACHING COLD FRONT FRIDAY. SLOW CLEARING SATURDAY.

B. FORESTRY OPERATIONS - SIGNIFICANT WEATHER - WEDNESDAY -MISSISSIPPI

FIRE DANGER - LOW. LOW LEVEL WINDS MOSTLY SOUTH TO SOUTHEAST LESS THAN 3 MPH.

PRESCRIBED BURNING - POOR DUE TO LACK OF WIND.

<u>SMOKE DISPERSION</u> - VERTICAL DISPERSION GOOD DURING DAYS HORIZONTAL DISPERSION POOR.

HARVESTING\_-\_GOOD

<u>PLANTING</u> -\_ EXCELLENT

NURSERIES - EXCELLENT

<u>SPRAYING</u> - EXCELLENT

SPECIAL USER MODEL

Yes

ENTER LAT AND LONG

31.3 90.1

MODELS?

# SPOTO-A, RUSTY

03 09 76

| LST  |    |    |    |    |
|------|----|----|----|----|
| TIME | T  | RH | WS | WD |
|      |    |    |    |    |
| 18   | 60 | 53 | 05 | 18 |
| 19   | 60 | 53 | 05 | 18 |
| 20   | 59 | 57 | 04 | 18 |
| 21   | 58 | 62 | 04 | 19 |
| 22   | 58 | 75 | 04 | 19 |
| 23   | 56 | 80 | 02 | 19 |
| 00   | 55 | 91 | 00 | 00 |
| 01   | 53 | 92 | 00 | 00 |
| 02   | 53 | 93 | 00 | 00 |
| 03   | 52 | 93 | 00 | 00 |
| 04   | 52 | 93 | 00 | 00 |
| 05   | 51 | 94 | 00 | 00 |
| 06   | 51 | 93 | 00 | 20 |
| 07   | 53 | 90 | 00 | 20 |
|      |    |    |    |    |

PROBABILITY OF RUST INFECTION - LOW

OTHER REQUESTS?

# No

SMOKEY LOG OFF16.04.50.SMOKEY SRU1.000 UNTS

Costs of the system to a typical nurseryman might be:

- Computer terminal--\$1,400 to \$6,000 depending on special features.
- (2) Computer costs--about \$200/year.
- (3) Telephone charges--\$0.18/minute at the FTS rate or about \$0.36/minute commercial depending on distance.

The sample computer /user exchange can be printed in about 4 minutes with a 30-character per second terminal. During the 2-year operational experiment, computer costs will not be charged to a forest user who is participating in the experiment and estimating utility and worth of the system products. Therefore, a user could obtain information similar to the sample for a one time charge of \$1,400 for a terminal and communications charges of either \$0.72 FTS or \$1.44 commercial. If sufficient resources become available for the experiment, communication charges and computer terminals will be provided to participants at no cost to the user.

### IMPLEMENTATION TIMETABLE - TENTATIVE

The system will be implemented one state at a time, starting with Georgia during March of 1977. Georgia was chosen as the first state largely because the basic communications framework already exists. With expansion of the communications network, Florida and North Carolina will be added to the system in Fiscal Year 1977. Initial users within these states will be the State Forester's office, one or two other State Forestry offices other than the State headquarters, the NWS State forecast office, and the National Forests in each of these states. User costs for the experiment, including communication charges, will be paid by the Forest Service as part of the experiment. Other users within these states will have to pay the costs indicated to use the system.

Other states will be added as resources become available to fund communications and terminal charges for the NWS state forecast office, the State Foresters office, and the National Forests within that state.

User decision models of interest to nurserymen are developed to the extent indicated below:

Region.--First version being evaluated by U.S. Forest Service, Region 8, Office of Fire Management in Atlanta.

SPOTO-A. --Operational testing expected in late February 1977. Later versions that incorporate site factors should be available early in 1978.

RUSTY.--Ready for user testing by April of 1977.

MIRE.--Ready in mid to late 1978.

# USER PARTICIPATION AND INQUIRES

Accessing procedures and model descriptions will be published in a User's Guide and will be available from the Southern Forest Fire Laboratory, Macon, Georgia. Prospective users are encouraged to comment on the usability, format, and content of the system as described in this paper. Comments or inquires should be addressed to:

> James T. Paul, Team Leader Weather Interpretations Team Southern Forest Fire Laboratory P. O. Box 5106 Macon, Georgia 31208 Telephone 912-746-5191