Effect of Harvest Residue Management on Nutrient Cycling and Tree Growth in a Young Loblolly Pine Plantation

Chris A. Maier, USDA Forest Service, RTP, NC
Kurt H. Johnsen, USDA Forest Service, RTP, NC
Philip Dougherty, Dougherty and Dougherty Forestry Services, Athens, GA
Steve Patterson, MeadWestvaco Corporation, Summerville, SC
Jessica Tisdale, HDR, Raleigh, NC

Nutrient Dynamics of Planted Forests
November 27-28, 2012, Vancouver, WA
Loblolly Pine (*Pinus taeda* L.)

- Loblolly pine plantations cover more than 13 million hectares in the U.S. Southeast.
- Harvested on 20 – 35 year rotation depending on products.
- Genetic improvement and silviculture are highly advanced (50+ years of research).
- Potential productivity can exceed 35 m³ h⁻¹ year⁻¹.
- Deployment of clonal systems promises to further increase productivity.

Graph:
- Intensive plantations
- Traditional plantations
- Natural stands

Source: adapted from Allen and Albaugh 2010
Organic Matter Management

- Proactive soil management that stabilizes or increases soil organic carbon is necessary to realize the productive potential of genetically improved material.

5 – 50 Mg C ha\(^{-1}\)
80 - 200 kg N ha\(^{-1}\)

Courtesy: H. Lee Allen

Courtesy: Mike Tyree
Cross Carbon Study: Objective

- Investigate the potential to use forest logging residues incorporated into the soil during site preparation to enhance soil quality, promote short- and long-term net ecosystem productivity or carbon sequestration.

 - manipulate N availability by soil incorporation of logging residues or forest floor during site preparation
 - manipulate N demand using clones with different growth or nutrient use efficiencies
General Hypotheses

Adapted from Harrison et al. 1995
Site Location

- MeadWestvaco lands
- Berkeley County, SC
- Soils: Lynchburg/Ocilla - moderate OM, low P, SW poorly drained, high water table

- Annual precipitation: 1358 mm
- Mean temperature: January – 8 °C; July – 27 °C
Site Characteristics

- **Previous Stand:** 21 years old, 2nd rotation, harvested in May 2004
 - 518 trees ha\(^{-1}\)
 - 43 m\(^2\) ha\(^{-1}\) BA, SI\(_{25}\)=23m (75 ft)
 - ≈ 93 Mg C ha\(^{-1}\) in total biomass

- **Following harvest:**
 - ≈ 24.5 Mg ha\(^{-1}\) litter (<0.5 cm)
 - ≈ 22.0 Mg ha\(^{-1}\) wood (>0.5 cm)

- Forest floor (C:N ≈ 112) and chipping effluent (C:N ≈ 700) used as source for treatment residue.
Treatments

- Five residue treatments:
 - **Control** – no treatment
 - **Raked (R)** – \(\approx 25 \) Mg ha\(^{-1}\) Forest Floor removed
 - **Forest floor (FF)** - 25 Mg ha\(^{-1}\) FF added (High Quality, C:N\(\approx\)112)
 - **1x Logging residue (1LR)** – 25 Mg ha\(^{-1}\) LR (Low Quality, C:N\(\approx\)700)
 - **2x Logging residue (2LR)** – 50 Mg ha\(^{-1}\) LR

- 38 m x 48 m treatment plots replicated 3x
- Planted with ArborGen Clone
 - (1.8 x 4.3 m spacing-1292 trees ha\(^{-1}\))
 - AA93
 - AA32 (in C and 1LR treatments only)
- Weed control first two years
 - Arsenal, Oust
 - Broadcast or hand applied
Site Preparation

Hand raked

Raked (R) - 156 kg N ha⁻¹

Forest Floor (FF)

+ 156 kg N ha⁻¹
Site Preparation

Logging Residue (LR) +18 or 36 Kg N ha\(^{-1}\)

Double Bedded
Results

- Evaluate the influence of the residue characteristics on decomposition and nutrient release (nutrient dynamics).

- Residue effects on soil and microbial biomass carbon and nutrients

- Residue effects on tree and stand growth

- Clone x Residue
Soil Carbon - Sampling Locations

Depth (cm)

0 20 40 60 80 100

Bed
1.75 m ± 0.05 SD

Interrow
1.38 m ± 0.10 SD

Trough
0.57 m ± 0.03 SD

Zone A
Zone B
Zone C
Zone D

Original surface
Coarse Organic Fragments (COF)

Maier et al. Forest Science 2012
COF: decomposition

Residue Decomposition

\[\frac{X_t}{X_0} = e^{-kt} \]

- Soil incorporated residues will persist for much of the rotation.

- $k = 0.17 \pm 0.01$
 - $MRT = 29.0$ years

- $k = 0.23 \pm 0.03$
 - $MRT = 20.4$ years

Maier et al. Forest Science 2012
COF: N and P Release

Nitrogen

% of initial N remaining vs Stand Age (year)

Phosphorus

% of initial P remaining vs Stand Age (year)
COF: K, Mg, and Ca release

Potassium

% of initial K remaining

Magnesium

% of initial Mg remaining

Calcium

% of initial Ca remaining
Soil Nutrients: Mineral Soil (<2mm)

(Bed, 0 – 60 cm)

<table>
<thead>
<tr>
<th></th>
<th>C (g kg⁻¹)</th>
<th>N (g kg⁻¹)</th>
<th>C/N</th>
<th>P (mg kg⁻¹)</th>
<th>Mg (mg kg⁻¹)</th>
<th>K (mg kg⁻¹)</th>
<th>Ca (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.3 ab</td>
<td>1.18 ab</td>
<td>34.9</td>
<td>26.2</td>
<td>40.8 a</td>
<td>37.8 a</td>
<td>217 ab</td>
</tr>
<tr>
<td>R</td>
<td>31.2 a</td>
<td>0.99 a</td>
<td>36.7</td>
<td>27.4</td>
<td>34.8 a</td>
<td>38.7 a</td>
<td>173 a</td>
</tr>
<tr>
<td>FF</td>
<td>46.5 bc</td>
<td>1.44 b</td>
<td>39.9</td>
<td>25.1</td>
<td>63.9 c</td>
<td>45.1 ab</td>
<td>339 d</td>
</tr>
<tr>
<td>1LR</td>
<td>48.0 c</td>
<td>1.41 b</td>
<td>54.9</td>
<td>27.7</td>
<td>51.8 b</td>
<td>49.9 b</td>
<td>264 bc</td>
</tr>
<tr>
<td>2LR</td>
<td>54.7 c</td>
<td>1.50 b</td>
<td>41.1</td>
<td>27.5</td>
<td>65.8 c</td>
<td>64.3 c</td>
<td>307 cd</td>
</tr>
<tr>
<td>SE</td>
<td>3.1</td>
<td>0.09</td>
<td>7.8</td>
<td>2.5</td>
<td>2.9</td>
<td>2.6</td>
<td>18</td>
</tr>
</tbody>
</table>

- Average over years 0 – 7.

Maier et al. Forest Science 2012
Soil Carbon: Soil Macro-Organic Matter

Carbon OM fraction (g C kg soil\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.5 a</td>
<td>7.4 ab</td>
<td>15.6 ab</td>
</tr>
<tr>
<td>R</td>
<td>2.3 a</td>
<td>4.8 a</td>
<td>12.5 a</td>
</tr>
<tr>
<td>FF</td>
<td>5.8 b</td>
<td>12.5 c</td>
<td>16.4 b</td>
</tr>
<tr>
<td>1LR</td>
<td>6.5 b</td>
<td>10.7 bc</td>
<td>20.7 c</td>
</tr>
<tr>
<td>2LR</td>
<td>9.3 c</td>
<td>14.2 c</td>
<td>22.2 c</td>
</tr>
</tbody>
</table>

- Age 7
- Macro-organic matter (150-2000 µm) – density fractions
- 60 – 80% of total soil C
- >45% OM in heavy fraction

- LR increased C in all fractions
- LR treatments are a sink for N

Maier et al. Forest Science 2012
Residue treatments increased microbial biomass C
FF increased N mineralization
LR decreased N mineralization.
Residue Treatments: Productivity

Clone AA93 – FF

Age: 18 months

Clone AA93 – 2LR
Residue Treatments: Height

AA93

Trt x Age: p=0.004
Residue Treatments: Volume

![Graph showing stem volume over stand age for different residue treatments.](https://example.com/graph.png)

- **Stem Volume (m3 ha$^{-1}$)**
 - Control
 - R
 - FF
 - 1LR
 - 2LR

- **Stand Age (years)**: 2, 3, 4, 5, 6, 7

- **Relative Volume Increment** (0.5 to 1.4)

- **trt x age**: p=0.016

Maier et al. Forest Science 2012
Belowground Biomass

- Root distribution within beds differed with treatment.
- Significance for long-term productivity?

Maier et al. Forest Science 2012
Genetics x Silviculture

Hypotheses:

Biomass Production

<table>
<thead>
<tr>
<th></th>
<th>AA-32</th>
<th>AA-93</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“Wide Crown” ideotype (Low GE)</td>
<td>“Narrow Crown” ideotype (High GE)</td>
</tr>
<tr>
<td>1LR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Genetics x Silviculture: Year 2 Growth

Year 2 Volume Growth

Seedling volume (m³ ha⁻¹)

Day of Year

Control - AA93
Control - AA32
1LR - AA93
1LR - AA32
Genetics x Silviculture: Stem biomass

- Year 7: Treatment x Clone p=0.04
- AA32 10% more stem biomass in Control than AA93
Summary

- Residue quality had a significant effect on rate of decomposition, nutrient immobilization and release:
 - LR treatments initially immobilized N and P
 - FF treatment was a source of N and P
- Residue treatments increased mineral soil C, N, Mg, K, Ca, but not P.
- Residue treatments increased microbial biomass C and N.
- Residue quality altered rates of N availability
 - high quality FF treatments increased productivity
 - low quality LR treatments inhibited productivity
 - Residue effect on growth disappeared by age 6, but...
- Raked treatment had no effect on productivity or soil C, but...
- Clone x LR treatment interaction on stem biomass accumulation.