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Abstract 
Nursery  managers  face  a  wide  variety  of  problems 

that  lend  themselves  to  research  methods.  This  chapter 
(1) describes fundamental statistical concepts—inference, 
replication, randomization; (2) discusses methods for con-
trolling experimental error—pairing, blocking, split-plot 
design, covariance —to increase the sensitivity of experi -
ments; and (3) traces the research process applied to 
forest-tree nurseries-defining problems, designing and 
conducting experiments, and implementing solutions based 
on sound Interpretation of data. Combining the statistical 
concepts presented here with personal experience and 
biological intuition strengthens the nursery researcher's 
ability to meet the major goal—and challenge —of nursery 
research: to develop new methods for producing high-
quality seedlings at low cost. 
 

28.1 Introduction 
Nursery managers and growers are researchers both by 

need and inherent nature. Keenly observant and inquisitive, 
they continually seek to improve seedling quality and cost -
effectiveness of their nursery practices. They face a wide vari-
ety of problems that lend themselves to research methods—for 
example, whether to use a new piece of equipment or a new 
herbicide, how dense and when to sow seed for various stock 
types, or how to determine optimum fertilizer and irrigation 
regimes. Necessarily, however, recommendations to alter nur-
sery practices are nearly always based on incomplete informa-
tion, which successful nursery managers evaluate in light of 
their experiences and instincts to make sound, effective 
decisions. The science of statistics deals with drawing conclu-
sions from incomplete information, whereas biometrics is the 
application of these statistical techniques to biological problems. 
Statistically designed experiments often provide important in -
formation upon which nursery managers can base their deci-
sions and calculate the degree of uncertainty associated with 
their conclusions.  

The design and execution of experiments are often team 
efforts involving biometricians and researchers. Information in 
this chapter should help make the nursery researcher a stronger 
team member, better able to balance statistical considerations 
with practical and biological aspects of nursery problems. 
Specifically, the chapter objectives are to (1) trace the research 
process as applied to forest-nursery problems (see 28.3), (2) con-
trast operational trials with 'statistically designed experiments 
(see 28.4), (3) describe, intuitively, the statistical concepts of 
designed experiments (see 28.5), and (4) delineate the processes 
involved in designing, executing, analyzing, and interpreting 
those experiments (see 28.6). 
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28.2 How to Use This Chapter 
A few words are in order regarding use of this chapter.  

The chapter is intended as a complete introductory treatise 
on experimental design for nursery workers; no statistical 
training is assumed. It is not a formula-oriented discussion; 
excellent texts by Freese [8] and Little and Hills [ 13] provide 
formulas for analyzing basic experimental designs. Nor does it 
specifically address the plantation-testing phase of nursery 
research, although the statistical concepts described may be 
widely applied to agricultural and forestry experimentation.  

The chapter may be useful both for a first-time reading, to 
gain an understanding of statistical concepts of experiments, 
and for future reference. Some concepts are treated more fully 
than needed for a first reading and should probably just be 
skimmed. In particular, a quick reading of definitions (Table 1) 
and sections 28.3 to 28.5 is good preparation for section 28.6, 
the main focal point, describing how to design and execute 
experiments and interpret their results. For future reference, 
section 28.6 can be used as a checklist of items to consider 
when actually planning nursery experiments.  

28.3 The Research Process: 
An Overview 

An experiment is a planned inquiry to obtain new informa-
tion or to confirm or deny previous results for the purposes of 
making recommendations [18]. The process of experimenta-
tion is profitably applied to many problems encountered in 
forest -tree nurseries (Fig. 1). Cause-effect relationships [19, p. 
86] are established by observing how certain response vari -
ables (say, caliper) are influenced by specified levels of one or 
more factors (say, fertilizer). Although nursery managers may 
not necessarily think of it as experimentation, they commonly 
(1) encounter a problem, (2) seek out existing information, (3) 
refine the problem and set hypotheses or objectives, (4) plan 
and conduct experiments to obtain new data pertinent to their 
nursery conditions. (5) draw conclusions based on their inter-
pretation of the new data in light of existing information and 
their instincts, and (6) implement a change in nursery procedure. 
Often, because conclusions lead to new problems or questions, 
several stages of experimentation may be required. (See also 
chapter 29, this volume, for more details on problem-solving 
techniques.)

 
 

Table 1. Definitions of common terms used in the design of experiments.  

Term  Definition  Examples/Comments 

Experiment  Planned inquiry to obtain new information or to confirm or 
deny results from previous investigations for the purposes 
of making recommendations [ 18, p. 88]. 

 
 
 

Nursery experiments gain information on new field tech- 
niques, equipment, packing-shed alignments, storage fa- 
cilities, etc. 

Operational    
trial 

 Preliminary experiment in which each treatment is applied 
to only one plot (nonreplicated). 

 
 

Useful when treatment effects will be large relative to back- 
ground "noise" (uncontrolled variation). 

Designed 
experiment 

 
 

Detailed, critical investigation in which precise, unbiased 
conclusions and measures of uncertainty associated with 
those conclusions are required. 

 
 
 

Treatments are nearly always replicated more than once on 
separate plots and allocated to plots at random. 

Inductive 
reasoning 

 
 

Drawing conclusions or making predictions about a wide 
sphere of interest (a population) from particular cases or 
observations (samples). 

 
 
 

The sun has risen every day for millennia (a large sample); 
therefore, it will rise tomorrow. 

Deductive 
reasoning 

 
 

Drawing conclusions or making predictions based on well- 
defined principles from which those conclusions or pre- 
dictions logically follow. 

 
 
 

That the sun will rise tomorrow logically follows from the 
principles of astronomy. 

Factor  An item, element, or process under investigation in an ex- 
periment. Effects of a given factor are examined by test - 
ing each factor at more than one level (factor level). 

 
 
 

Sowing date, irrigation, seed source, bed density, etc. are 
factors; three rates of nitrogen (N1, N2. N3) and two 
sowing dates (D1, D2) are factor levels. 

Treatment  All factors and their levels applied to an experimental plot.  From above, N1/D2 is a treatment plot sown on the second 
date receiving the lowest nitrogen level. 

Experimental  
plot 

 Smallest physical unit to which a treatment is allocated 
independent of all other treatments.  

 
 

A specific length of nursery bed. 

Observational 
unit 

 Observed or measured items within an experimental plot 
[11, p. 9]. 

 
 

Tree seedlings within a nursery experimental plot. 

Measurement  
plot 

 
 

Portion of the experimental plot actually measured; 
unmeasured portion serves as buffer or border. 

 
 

The center of a nursery plot; seedlings on either side of 
center are not measured. 

Response  
variable 

 Variable (characteristic) measured on each experimental 
plot to assess influence of treatments. 

 
 

Number of plantable seedlings, percent germination. height, 
caliper, shoot:root ratio. 

Precision  Relative dispersion or clustering of measurements or esti- 
mates. 

 
 

A precise measurement is one of low dispersion; if re- 
measured, it will be nearly the same. 

Accuracy  Absolute correctness of measurements or estimates.  A scale that always weighs 2 g too heavy is inaccurate even 
if precise (consistent). 

Bias  Directional (up or down) measure of inaccuracy.  The above scale is biased upward 2 g. 

Confounding  Condition in which the effects of two of more factors on a 
given response variable are confused and cannot be sepa- 
rated. 

 
 
 

A nursery researcher finds larger seedlings from the field 
with both higher N and P levels; the effects of N and P 
cannot be separated. 

Experimental 
error 

 
 

A measure of the variation among experimental plots re- 
ceiving identical treatments [18, p. 901. 

 
 

Experimental error will be high if field plots are inherently 
variable or if experimental technique is sloppy. 
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For example, perhaps during an initial experiment, a new 
rotating root-pruning table is found to save money on the 
packing line, but seems to damage too many roots. How can 
the  table  be  redesigned  to  hold  the  seedlings in place better 
so fewer roots are damaged? Existing information may be 
sought from engineers and manufacturers, and objectives for-
mulated for designing one or two modifications to test in a 
second experiment. Having then tried the new modifications 
for a period of time, the manager decides that one of them 
"causes" the desired "effects" (less root damage) and opera-
tionally implements the new root -pruning procedure on the 
packing line. 

Consider, as a further example, the process of experiment-
ing with a new herbicide to control weed species in forest 
nurseries [16]. Experiments are set up to compare various 
application rates of a new chemical to the standard weed-
control method to determine relative phytotoxicity and effec-
tiveness. Note that no amount of experimentation can totally 
prove beyond all doubt that this chemical will be suitable for 
all nurseries under all conditions. This is common of problems 
requiring inductive reasoning—in which inferences are made 
about a larger sphere of interest from a smaller data base. The 
broader and more intensive our sample—that  is, the more 
years and nurseries in which the chemical is used and tested—
the more comfortable (certain) we feel about applying the 
results to the population of interest, perhaps all nurseries of 
similar soil type. We further use deductive reasoning, based 
on underlying biological, chemical, and physical principles, to 
extend and rationalize the inductive inferences drawn from 
experimentation. For example, the new chemical will probably 
not be particularly suitable for nurseries suffering severe grass 
competition if it is chemically ineffective against grasses.  

Because experimental processes do not absolutely prove 
the hypotheses being investigated, the amount of data (sample 
size) required to make a decision becomes a personal choice. 
How certain must the conclusions be? So me problems require 
 

 
 
Figure 1. The research process, as it might be applied in forest-
tree nurseries (adapted from [19, p. ix]) .  

stronger evidence than others, perhaps because the decision 
would be more costly to implement. Thus, the type and amount 
of  experimentation  and  the formality with which the research 
is  applied  to  a  problem  vary  with  both  the investigator and 
the problem. 
 

28.4 Operational Trials versus 
Designed Experiments 

Some problems are appropriately addressed with opera-
tional trials (preliminary  investigations in which each treat -
ment is applied to only one plot). Others must be examined 
through designed experiments (detailed, critical investiga-
tions in which precise, unbiased conclusions and associated 
measures of uncertainty are required). The nature of yet other 
problems precludes any type of experimentation. For example, 
when a manager discovers a widespread insect or disease 
problem in the nursery, immediate control by the "recom-
mended"  method  is  more  important  than  experimenting  to 
find  the  optimum  rate  or chemical. The manager may decide 
to  experimentally  treat  some  small  areas  at  a  lower  rate or 
with an untried chemical, but even this may be unacceptable 
because of the large inoculum source remaining if the untested 
treatment were unsuccessful. 
 

28.4.1 Operational trials 
In general, operational trials have two main uses: prelimi-

nary investigations and final-phase, large-scale testing. Opera-
tional trials are particularly suitable for preliminary experiments 
when background variation among experimental plots is small 
relative  to  expected  treatment  effects.  For example, the ef-
fects of a new herbicide formulation on weed mortality will be 
large relative to the background effects due to other causes. If 
the preliminary objectives are to see whether the chemical has 
any promise and warrants further testing, an operational trial is 
suitable for visually assessing effectiveness and phytotoxicity. 
Many preliminary (screening) tests of, for example, new 
chemicals, fertilizer regimes, wrenching blades, and packing-
line arrangements are appropriately conducted as unreplicated 
operational trials.  

For final-phase or large-scale testing, the use of small experi-
mental plots needed to obtain  sufficient replication may gener-
ate experimental artifacts. That is, the new treatment cannot be 
"operationally" applied to the small experimental plots often 
needed for designed, well-replicated experiments. Operational 
trials are suitable in these situations. Larger plots, more repre-
sentative of operational application of the new treatment, are 
used, while statistical replication is sacrificed.  

When an operational trial is chosen as the appropriate 
method of experimentation, the various treatments should be 
(1) applied to similar areas to minimize systematic effects due 
to uncontrolled variation and (2) compared in more than one 
nursery bed so that the inferences and conclusions drawn will 
have broader validity. 
 

28.4.2 Designed experiments 
Given that an experiment is warranted, a designed experi-

ment is more appropriate than an operational trial for cases 
benefiting from one or more of the special attributes of de-
signed experiments (Table 2). Designed experiments are particu-
larly useful for detailed investigations—for example, establishing 
optimum rates of a chemical or procedure, investigating inter-
actions among multiple factors, or revealing the biological 
principles of a phenomenon under investigation. In these cases, 
the  attributes  of  designed  experiments  are  well  worth  the 
extra effort. Uncontrolled, background variation affecting growth 
rate within and between nursery beds is large due to differ-
ences in fertility, soil type, water drainage, and irrigation.
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Well-designed experiments, randomized and replicated over 
this background variation, are often required to achieve unbi-
ased  estimates  of  treatment  response  with  the  appropriate 
level of precision and range of validity. Most of the remainder 
of  this  chapter  considers  the  concepts  behind and execution 
of designed experiments in nursery research. 
 

28.5 Statistical Concepts of 
Designed Experiments 

Statistical-inference concepts, discussed first (see 28.5.1), 
center around developing and quantifying the uncertainty of 
the conclusions drawn from designed experiments. Replica-
tion and randomization, discussed next (see 28.5.2), are the 
two  core  concepts  of  experimental design and are considered 
in some depth; many of the benefits of designed experiments 
derive because they are, by definition, randomized and repli-
cated.1 Finally, methods for controlling experimental error (see 
28.5.3) are presented which can result in more precise esti-
mates of treatment means and more certainty about the con-
clusions drawn from experiments.  
 

28.5.1 Statistical inference 
 
28.5.1.1 Point estimates, interval estimates, and  
hypothesis tests 

Statistical  inference  is  the  process  of using sample data 
to generalize about a population or wider sphere of interest. 
For designed experiments, this usually implies calculating the 
level of uncertainty associated with these generalizations. This 
is one of the main rationales for using designed experiments.  

An example should clarify the three main elements of statisti-
cal inference (Table 3) and the import ance of these in nursery 
experimentation. If five plots receive a specific fertilizer regime, 
the mean number of plantable seedlings for that regime would 
be calculated by summing the total number of plantable seed-
lings for all five plots and dividing the sum by 5. This treatment 
mean is subject to experimental error and is only a point 
estimate  of  the  true  population mean (the response achieved 
if that regime were applied to an infinite number of nursery 
plots). Though further experiments might show this point esti-
mate to be in error, for now, it is a single number that esti-
mates the parameter of interest. 

 
1Nonreplicated and fractionally replicated designs are of limited useful-
ness in nursery research and are not considered here; see Cox [7] and 
Kempthorne [11].  

Confidence  intervals  quantify  the  uncertainty  and  state 
the  error  associated  with  point  estimates.  Note that the span 
of a confidence interval is closely related to the experimental 
error. If the just -mentioned fertilization experiment yields 
highly reproducible results (i.e., precise, low experimental error), 
then the experimenter can state with a high degree of confi-
dence (say, 95%) that the true mean fertilizer response lies 
within a narrow range surrounding the estimated treatment 
mean. 

Hypothesis testing allows researchers to quantify the un-
certainty with which they accept or reject hypotheses formu-
lated before an experiment. A statistical hypothesis is testable 
by experimentation in the sense that experimental results wi ll 
either tend to support or refute it; however, because it can 
never be totally proven or disproven, researchers calculate the 
level of confidence placed on the decision to acceptor reject. 

Statistical hypotheses are formulated as null hypotheses—
that is,  the effects under investigation are assumed to have no 
effect on the response variable. Examples are (1) all fertilizer 
regimes yield the same number of plantable seedlings, (2) bed 
density has no effect on stem caliper, (3) the effect of nitrogen 
(N) fertilization on height growth is the same regardless of the 
level of phosphorus (P) fertilizer (no interaction). This "innocent-
until-proven-guilty" approach has both statistical and scientific 
underpinnings. From a statistical standpoint, for example, a 
researcher calculates the probability of the observed differ-
ences between two treatment means occurring by chance if, in 
fact, there are no differences between the true treatment 
effects. If there is only a small chance (say, 5%) of obtaining the 
observed differences if the null hypothesis is true, the re-
searcher concludes that treatments differ—and rejects the null 
hypothesis. From a scientific standpoint, null hypotheses state 
a skepticism and wariness of the consequences of being wrong. 
For  instance,  a nursery researcher may not want to implement 
a new, more costly fertilizer regime until the evidence points 
overwhelmingly in its favor; that skepticism is maintained by 
hypothesizing no effect. 
 
28.5.1.2 Incorrect conclusions from experiments 

Because stat istical hypotheses can never be proven or 
disproven, it is inevitable that incorrect conclusions are drawn 
from  experiments.  Two  types  of  incorrect  decisions (errors) 
are possible (Fig. 2): 

• Type 1 error (a): The null hypothesis is rejected when it is 
actually true. That is, differences among treatments are de-
clared statistically significant when the true treatment 
effects are, in fact, identical. 

 
 
Table 2. Attributes of designed experiments (adapted from [7, p. 5]). 

Attribute  Explanation  Comments/Examples 

Absence of 
systematic 
effects 

 
 
 

Treatment  comparisons  are  not confounded or biased due 
to uncontrolled (background) variation. 

 
 

Comparison  of  two  fertilizer  regimes  would  be   biased 
by consistently applying one regime to plots in a more 
fertile part of the nursery. 

Proper degree 
of precision 

 Poor design and large, uncontrolled variation result in large 
experimental error and imprecise estimates of treatment 
effects; "overdesign" results in overexpenditure of effort 
for the necessary data. 

 
 

 
 

High precision occurs when (1) experimental plots have 
similar background characteristics, (2) experimental proce-
dures are conducted with care and accuracy. (3) a large 
number of replications are used, and (4) the experimental 
design is efficient [7, p. 154]. 

Wide range   
of validity 

 

 

Inferences and conclusions will apply to the entire popu-
lation of interest; replication over time and space broadens 
the range of validity. 

 

 
 

Testing a herbicide for a few years in several nurseries 
results in broadly applicable conclusions.  

Quantification 
of degree of 
uncertainty 

 

 
 

The "reasonable shadow of a doubt" accompanying experi-
mental conclusions is quantifiable. 

 

 

There is a  99%  chance that the new fertilizer regime re-
sults in 2+0 height increase of 3.1 to 5.2 cm above the 
standard regime. 
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Table 3. Three main elements of statistical inference.  

Term  Explanation  Comments/Examples 

Point 
estimate  

 A single number that estimates a certain quantity in the 
population of interest. 

 

 

Treatment mean, standard deviation, minimum, 
maximum, and range are all point estimates.  

Confidence 
interval 

 

 

For a given level of confidence, the specified range within 
which the quantity of interest lies.  

 

 

A confidence interval on a treatment mean states with, 
say, 95% confidence that the true mean response lies be-  
tween two estimated values.  

Hypothesis 
testing 

 

 

A statistical technique to accept or reject a hypothesis 
formulated before the experiment in light of the empirical 
results.  

 

 

 

Designed experiments allow quantification of the level of 
uncertainty associated with acceptance or rejection. 

 
 

•  Type 2 error ( β): The null hypothesis is accepted when it  is 
really false. That is, statistically significant differences among 
the treatments are not declared even though they actually 
exist. 
 
Examples  help  clarify  these  two  types  of error. Consider 

the United States judicial system; the null hypothesis is "innocent 
until proven guilty beyond a reasonable shadow of a doubt" 
[10, p. 167]. The null hypothesis is stated this way purposely 
because our society is wary of the consequences of convicting 
innocent people: we therefore view "guiltiness" with some 
skepticism. Two correct decisions are possible (Fig. 2): (1) 
exonerating innocent defendants (accepting the null hypothe-
sis when it is true), and (2) convicting guilty defendants (rejecting 
 

 
 
Figure 2. Correct and incorrect decisions are often made on the 
basis of incomplete information: (a) hypotheses tested by de-
signed experiments and (b) a defendant judged by a jury (adapted 
from [10, p. 173]). 

the null hypothesis when it is false). Convicting an innocent 
defendant  is  a  Type  l error, whereas exonerating a guilty one 
is a Type 2 error. This emphasizes the interrelatedness of the 
two  error  types.  Because  the  evidence  must  be  strong  for 
juries to declare a defendant guilty, the Type 2 error rate is 
large. Similarly, in nursery experiments, if a researcher re-
quires overwhelming evidence to reject the null hypothesis 
(i.e., declare differences among treatments), the Type 2 error 
rate will be high (i.e., some important treatment differences 
will be missed). 

Only by increasing experimental precision can the rates of 
making both types of errors be reduced simultaneously. In-
creased precision is related to the notion of the power, or 
sensitivity, of the experiment. If Type 2 errors are infrequent (β 
is small), a researcher can be more confident of declaring 
treatment differences that actually exist, and the experiment is 
said to be powerful (sensitive to t reatment differences). 

In most investigations, the level of a is set by the experi-
menter; thus, the rate of Type 1 errors is known. Testing 
hypotheses at the α = 0.05 level states explicitly that there is a 
5% chance of declaring differences among treatments when 
they do not exist. On the other hand, β  is often undetermined 
and in many cases extremely high. That is, biologically impor-
tant differences among treatments are often missed (not de-
clared significantly different) because the experiment is not 
powerful enough to detect them at α = 0.05. The nursery 
researcher should always examine the magnitude of treatment 
differences and ask the biometrician for an approximation of 
the power of the experiment. 
 

28.5.2 Replication and randomization 
 
28.5.2.1 Repl ication 

Replication is the repetition of treatments on more than 
one experimental plot [13, p. 5]. True replication means that a 
given treatment is applied independently to the multiple plots 
receiving that treatment. Because this last point causes consid-
erable confusion in forestry experiments, it is useful to distin-
guish between subsampling and replication. For example, a nursery 
researcher applies two different fertilizer regimes to the entire 
length of each of two adjacent nursery beds. The researcher 
then scatters six 2-foot-long plots throughout each bed and 
counts the number of plantable seedlings lifted from each plot. 
In this instance, there are not six replicates of each treatment 
because  the  treatments  are  not applied independently to the 
six plots: in fact, all six plots received the same treatment 
application and are in the same bed. Rather, there is one 
replicate of each regime (a nursery bed) which is subsampled 
via subplots. To obtain true replication in the above example, 
12 plots would first have to be chosen and the treatments then 
allocated to them at random (see 28.5.2.2). 

The three functions of replication are to (1) increase the 
precision of estimated treatment effects, (2) provide a measure 
of experimental error, and (3) broaden the range of validity to
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which the experimental conclusions apply. The first and third 
functions were recognized in agricultural experimentation as 
early as the 1700s, as farmers noticed that uncontrollable 
variation in yields from field to field and year to year made it 
impossible to recommend the use of one crop variety over 
another without comparing the two in a number of fields and 
years [5]. 

To illustrate these functions, suppose that the effects of two 
fertilizer regimes on 2+0 stem caliper are compared in adja-
cent plots in a number of different places (replicates) in the 
nursery. Plots receiving the same fertilizer treatment will vary 
in  caliper  due  to  uncontrolled variation in, say, soil fertility, soil 
texture, date sown, proximity to irrigation lines, and so on. 
When the fertilizers are compared over a large number of 
replicates, effects of these uncontrolled factors "average out," 
and the estimated difference between fertilizer regimes more 
precisely measures the true difference due to fertilizer. The 
uncontrolled variation among plots—the experimental error—
can be measured by comparing replicates of the same treatment. 
If, for example, in replicate after replicate, regime 1 consis-
tently  results  in  larger  caliper  than  regime  2,  experimental 
error is small relative to treatment differences, and the re-
searcher is likely to reject the null hypothesis that the two 
fertilizers affect caliper equally. Ideally, the experiment must 
be replicated under varying conditions of time and space. 
Repeating this same experiment over several years and nurser-
ies  extends  the  inference  space  (population  of  interest)  in 
these two dimensions, broadening the range of validity of 
experimental results.  
 
28.5.2.2 Randomization 

"Randomization is the assignment of treatments to experi-
mental plots so that all plots have an equal chance of receiving 
a treatment. It functions to assure unbiased estimates of treat -
ment means and experimental error" [13, p. 5]. Put another 
way, randomization serves to equalize background (uncon-
trolled) characteristics of experimental plots receiving differ-
ent treatments and provides a basis for statistical inference [1, 
p. 32]. Plots receiving one treatment should differ in no system-
atic way from plots receiving another treatment; this is accom-
plished in practice by drawing numbers out of a hat or by using 
random-number tables or random-number generators to match 
the treatments by chance to their assigned field plots.  

Consider the following example to describe the reasons for 
randomization. Four replications of two fertilizer regimes are 
compared in the same nursery bed (Fig. 3). Two (of many) 
alternative field layouts include a systematic layout (Fig. 3a), in 
which regime 1 precedes regime 2 in each replicate, and a 
"random" layout (Fig. 3b). Treatment means (say, for caliper) 
are obtained by averaging the four replicates of each regime, 
and experimental error is estimated from the variation among 
plots receiving the same regime. Further suppose that a water 
gradient in this be d causes drainage to become consistently 
poorer from left to right. Because regime 1 always occurs 
before 2 in the systematic layout, it always experiences slightly 
more favorable drainage; this bias does not average out. Even 
if  no  true  differences  exist  between  the  fertilizer  regimes, 
mean seedling caliper (the response variable) may always be 
larger for regime 1 because it consistently experiences better 
drainage. Therefore, the estimated effect of regime 1 in the 
systematic layout is biased upwards from the confounding 
effects of water drainage. 

only the extreme nature of the water gradient allowed 
recognition of the bias created by this particular systematic 
design. However, other systematic designs may suffer similar 
bias associated with gradients that researchers fail to recognize. 
Thus, random designs are essential as insurance against the 
possible bias generated by systematic variation in the uncon-
trolled characteristics of experimental plots.  

Problems arise in experiments with few replicat ions and 
treatments because "extreme" layouts—outcomes of random-
ization that appear systematic or unfavorable for some reason—
occur fairly often, even at random. For example, if the experi-
ment in Figure 3 were treated as a paired experiment with four 
pairs (see 28.5.3.1), the alternating scheme (12121212  or 
21212121) would occur 1/8 of the time at random. Instances of 
such extreme layouts do not vitiate the need for randomization, 
but rather indicate the need for carefully examining the ran-
dom layout before its field implementation. Cox [7, p. 86] 
presents an excellent discussion of methods for dealing with 
extreme outcomes.  
 

 
 
Figure 3. Two possible field layouts—(a) systematic and (b) 
random-of an experiment comprising four replications of two 
fertilizer regimes (1, 2) in a nursery bed. 

 
28.5.3 Controlling experimental error 

Reducing experimental error can greatly increase the sen-
sitivity (power) of experiments to treatment differences. This 
section describes statistical methods of controlling error by 
choice of experimental design (see 28.5.3.1 to 28.5.3.3) and by 
covariance (see 28.5.3.4).  

To this point, the discussion of experimental design sug-
gests  that  treatments  are  always  assigned  to  experimental 
plots totally at random. For example, in a nursery experiment 
with three replications of each of 10 treatments, randomiza-
tion would ensure that each of the 30 nursery plots had an 
equal chance of receiving any replicate of any treatment. Such 
designs, called completely randomized designs (CRDs), are 
the simplest to lay out and analyze; however, experimental 
precision can often be increased by employing slightly more 
complex designs. Thus, imposing certain restrictions on the 
random assignment of treatments to experimental plots can 
control experimental error. 
 
28.5.3.1 Pairing 

The most intuitively appealing restriction of randomization 
occurs when an experiment testing the effects of two treat - 
ments  is  designed  such  that  treatment assignments are made 
in pairs. Two similar experimental plots are identified and
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called a pair; each plot within the pair randomly receives one 
of the two treatments. That is, randomization is still employed 
but is restricted to within-pair allocation of treatments to plots. 
The number of replicates equals the number of pairs. Because 
interest centers on comparing the relative, rather than absolute, 
effects of the two treatments, it is natural to use the difference 
between the paired treatment plots as the measure of response. 
Because experimental plots within pairs have similar back-
ground characteristics, uncontrolled variation (experimental 
error) is reduced by comparing differences on like plots.  

An example should make clear these conceptual advantages 
of  pairing.  A  nursery  researcher,  interested  in  comparing  a 
new fertilizer regime to the standard regime for 2+0 Douglas-
fir [Pseudotsuga menziesii (Mirb.) Franco], decides to test  eight 
replications of the two treatments. To ensure broad validity of 
the results to the entire range of nursery conditions, the re-
searcher  first  chooses  eight  nursery  beds  at random from all 
the beds containing Douglas-fir in their 2+0 season. Each of 
the 16 experimental plots will be 10 feet long and will receive 
one of the two regimes during the growing season; the number 
of plantable seedlings in the inner 4 feet of each plot (leaving a 
3-foot border on each end) will be assessed at time of lifting. 
Because the two plots in each bed occupy only 20 feet, their 
position along the bed is also randomly located.  

Two alternative designs for this experiment are shown in 
Figure 4. For the CRD (Fig. 4a), each of the 16 plots had an 
equal chance of receiving one of the two treatment regimes; 
one (of many) possible schemes is shown.  For  the  paired-plot 
 

 
 
Figure 4. Two alternative  experimental designs testing eight 
replications of two fertilizer regimes (1, 2). The field layouts of 
nursery beds and the plot locations within beds are chosen at 
random. Fertilizer regimes are assigned (a) at random to the 16 
plots and (b) to the 16 plots as eight pairs, each member of the 
pair receiving one of the two fertilizer regimes. 

arrangement, one regime was randomly assigned to either of 
the two plots per bed by a coin flip, the other to the remaining 
member of the pair.  

Imagine that these 16 plots sample a wide range of drain-
age conditions, fertility, soil texture, and proximity to irriga-
tion lines. Adjacent plots in the same bed will be more similar 
with respect to these conditions than will plots in different 
beds. Pairing plots exploits this similarity by basing the analy-
sis of treatment effects on the difference between treatments 
occurring in the same bed. Two plots lying in a poorly drained 
area of a bed necessarily have reduced yield of plantable 
seedlings. In the CRD, one fertilizer regime may be assigned to 
both plots of the poorly drained bed location, reducing its 
average over the eight replicates and increasing experimental 
error. In the paired-plot arrangement, however, the two re-
gimes will be negatively affected in the same way on a poorly 
drained location; the differential effect of regime 1 over re-
gime 2 may remain relatively stable, except for other sources 
of background variation associated with differences between 
plots within pairs.  
 
28.5.3.2 Blocking 

The concept of pairing logically extends to that of blocking 
for experiments with more than two treatments. In fact, paired 
plots are the simplest case of blocking. Suppose, for an experi-
ment testing a new herbicide at two application rates (L = low, 
H = high) against both a control (C = no herbicide) and the 
standard herbicide (S = standard), that each of the four treat -
ments is replicated 5 times (20 plots). If a CRD is used (Fig. 5a), 
treatments are assigned totally at random. If a randomized 
complete block (RCB) is used (Fig. 5b), each nursery bed is 
assigned one complete replicate of the experiment; randomiza-
tion is restricted to the allocation of treatments within a block.  If 
nursery beds are scattered, representing a wide variety of 
conditions, plots within a bed should be more similar to one 
another than to those from different beds.  

Consider what this does to comparisons of treatment ef-
fects for the above-mentioned herbicide experiment. At the end 
of  the  first  growing  season,  height  of  100  seedlings within 
each plot is measured to determine the possible phytotoxic 
effects of the new chemical. Suppose that bed 5 was not well 
prepared by the bed former and that this, combined with the 
inherent soil attributes of that bed, reduces height growth in 
bed 5 regardless of treatment. Bed 4, on the other hand, is 
located in a part of the nursery recently mulched, which accel-
erates  seedling  growth.  These  "bed effects" are average ef-
fects on 1+0 height common to all plots in a given bed. In 
addition to bed and treatment effects, 1+0 height also is 
influenced by "plot effects"—uncontrolled variation due to 
background characteristics of the specific plots within beds. 
For any of the 20 plots, then, 1+0 height may be expressed as 
the sum of these three effects: 

Height = (treatment effect) + (bed effect) + (plot effect) 

The mean for each of the four treatments is estimated as its 
average over five replicates. In the case of the RCB, bed effects 
influence  each  treatment  mean  equally  because  each  treat -
ment occurs once in each bed. in the CRD, differential bed 
effects influence treatment averages; specifically, the negative 
effect of bed 5 reduces the average levels for L and H of the 
new chemical, whereas the positive effect of bed 4 increases 
the average height in two plots for S. Thus, the RCB design 
increases the precision with which treatment effects are esti-
mated by allowing bed effects to be estimated separately and 
removed from the comparisons of treatments.  

This increase in precision is reflected in reduced experimental 
error. Overall error is estimated by the variability among the 
five plots receiving the same treatment. In the CRD, the five 
plots for any one treatment vary both by bed and plot effects,
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and both contribute to experimental error. In the RCB, be d 
effects can be directly estimated and can be eliminated from 
the experimental error. 

It  is  critical  to  realize  conceptually  that  blocking  works 
any  time  experimental  plots  of an entire replication (one plot 
of each treatment) can be grouped such that they are more 
similar to one another than to plots of other blocks. Then, 
differences among the groups are termed block effects (bed 
effects, in the herbicide experiment). This may mean, for 
example, that blocks are sown on different days, measured by 
different observers, or located in different parts of the nursery 
(see 28.6 for practical implications of blocking). 

Finally, the concept of blocking can be extended to more 
than one dimension through Latin Squares and similar designs. 
Though sometimes useful in nursery research, these designs 
suffer from sensitivity to missing data (e.g., plots accidentally 
destroyed by faulty irrigation) and from restrictions on the 
number of treatments and replications. Neter and Wasserman 
[15]  present  an  excellent  discussion  on  design  and analysis 
and on overcoming problems of these designs.  
 

 
 
Figure 5. Two alternative experimental designs testing four her-
bicide treatments (C = control, S = standard herbicide, L = low 
level of new herbicide, H = high level  of new herbicide). The 
benefit of the RCB (b) over the CRD (a) is that each bed receives 
one replication of all four treatments. 
 
28.5.3.3 Split-plot principle 

When, for practical reasons, some factors of an experiment 
require larger plot sizes than others, the split-plot principle is 
often applied. For instance, the minimum size of plots for 
irrigation treatments and sowing dates is necessarily larger 
than that for different sowing densities and seed sources. A 
split-plot design for two factors calls for assigning treatments 
of  one  factor  to larger plots (called main plots or whole plots) 

in a CRD, RCB, or other design and then splitting each whole 
plot into enough subplots to accommodate one replicate of each 
treatment level of the second factor. Because each whole plot 
contains  a  complete  replication  of  the  treatments of the sec-
ond factor, it is a "block" of the second factor. Randomization 
occurs in two stages: first, in assigning treatments of factor 1 to 
whole plots, then, in assigning treatments of factor 2 to subplots 
within each whole plot. Precision is often sacrificed for  estimat -
ing effects of the whole-plot factor, but increased for subplot 
treatment comparisons. Split -plot designs can be extended to 
multiple factors at both the whole-plot and subplot level and 
even to splitting the subplot (split -split plots). Cox [7, p. 142] 
and Little and Hills [13, chapters 8, 9] give excellent accounts 
of the concepts and algebra of split -plot designs; Cochran and 
Cox [6, chapter 7] present a more advanced treatment. 

For the purposes of describing the concepts behind split -
plot designs, consider a two-factor nursery experiment investi-
gating the effects of three fertilization regimes (F1, F2, F3) at 
each of two irrigation levels (H = high, L = low) on stem 
caliper of 2+1 Douglas-fir (Fig. 6). The irrigation system in the 
nursery may require that several beds on either side of an 
irrigation line receive the same irrigation treatment. It may be 
that the nursery researcher can only devote six lines to the 
entire experiment (say, two lines in each of three different 
sections of the nursery). Therefore, a possible RCB design for 
irrigation (exclusive of fertilization) may be obtained by ran-
domly assigning one of the two irrigation treatments to one of 
the two lines within each section (block) (Fig. 6a); this is an RCB 
with  two  treatments  and  three  blocks.  All  beds  watered by 
each line receive the same irrigation treatment. The fertilizer 
treatment  may  then  be  added  by  "splitting"  each  bed  into 
three lengths (subplots) to which one of the three fertilizer 
regimes is randomly assigned (Fig. 6b). Thus, the randomiza-
tion of fertilizer treatments is restricted to allocation within an 
irrigation whole-plot. 

Regardless of the response variable, two types of experi-
mental error are associated with this experiment. The subplot 
error, resulting from residual variation among subplots, esti-
mates microsite and other background differences influencing 
the response of subplots within a whole plot. The whole-plot 
error, resulting from the uncontrolled background variation 
among whole plots within a block, is usually larger than the 
subplot error. 
 
28.5.3.4 Covariance 

In a previous section (28.5.3.2), blocking of experimental 
plots into groups of similar soil types, etc. was presented as a 
method of reducing experimental error. Even after plots are 
grouped,  however,  background  characteristics of plots within 
a block may still vary. Knowing that this variation exists may 
be used to reduce experimental error by the statistical process 
of covariance [7, chapter 4; 18, chapter 15]. Covariance re-
quires making additional measurements of these other charac-
teristics (called concomitant variables) on each experimental 
plot. 

For an experiment testing the effects of different types of 
root wrenching on seedling caliper, suppose that even after 
blocking, substantial variation in soil N level exists among 
plots within blocks. N level may have an average influence on 
caliper; higher inherent N means larger average caliper. Know-
ing this relationship may help the researcher adjust treatment 
means to a common starting value of soil N. 

The analysis of covariance may be used for any type of 
statistical design (e.g., CRD, RCB, Latin Square) as an addi-
tional method of increasing precision. Foresters routinely use 
the simplest form of covariance by analyzing height "growth" 
instead of total height as a measure of treatment response. The 
rationale is to remove some of the initial variation in
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Figure 6. RCB split-plot design testing two irrigation levels (H = 
high, L = low) and three fertilizer regimes (F1, F2, F3): (a) irrigation, 
requiring larger plots, is the whole-plot factor; (b) fertilization, 
allowing smaller plots, is the subplot factor. 
 
height by measuring height before and after treatment applica-
tion and analyzing just the portion of height (the increment) 
added after treatment. 

Some words of caution are in order, however. The interpre-
tation of covariance analysis can become very complicated, 
making it difficult to separate the effects of the concomitant 
variable from those of the treatments. Statistically, this hap-
pens for complex experimental designs and when some plots 
are missing. Biologically, this happens when the concomitant 
variable is affected by the treat ment [7, p. 48]. This last point is 
extremely important. For example, if soil P level is used as a 
concomitant variable in an experiment assessing effects of 
phosphate fertilization on caliper and if it is measured after 
fertilizer application, then the treatment will drastically influ-
ence the concomitant variable. Adjusting for the average ef-
fect of soil P on caliper might eliminate all treatment  (fertilizer) 
effects. To avoid this type of problem, make sure that  concomi-
tant  variables  are  (1)  observed  before treatments are applied 
or (2) unaffected by the treatments.  
 

28.6 The Research Process for 
Designed Nursery Experiments 

This section covers in some depth the research process 
(28.3)  applied  to  designed  nursery  experiments. Emphasis is 

placed on the importance of statistical concepts (28.5) in 
developing, designing, conducting, analyzing, and interpreting 
these experiments.  

The following discussion provides a checklist for managers 
as they encounter and attack problems in their nurseries. 
T hough presented in chronological order, the steps of the 
research process are not independent of each other. Often, 
understanding the rationale of subsequent steps helps accom-
plish the current one. 
 

28.6.1 Defining the problem 
 
28.6.1.1 Recognizing a probl em 

Most nursery experiments stem from problems requiring 
practical solutions (see chapter 29, this volume). Even nursery 
research investigating the fundamental principles underlying a 
problem-such as the physiological basis of increased out-
planting vigor after fall fertilization of 2+0s—has immediate 
practical application. Practical problems may be arbitrarily 
classified as either today's limitations or tomorrow's oppor-
tunities. Today's limitations include existing insect, pathogen, 
or drainage problems, or optimizing packing-line arrangement 
with existing equipment; tomorrow's opportunities involve in -
corporating new technology—whether new chemicals, ma-
chinery,  or  cultural  practices—to  improve  seedling  quality 
and cost-effectiveness. Nursery researchers must be adept at 
recognizing and addressing both problem types.  
 
28.6.1.2 Refining the problem 

Once a problem area has been identified, the nursery re-
searcher relies on personal experience and secures existing 
information from literature, chemical labels, other nursery 
personnel, and specialists (e.g., extension agent) to answer the 
following questions: 

Does  the  problem  warrant  research? The answer may 
be no if (1) immediate action is required, (2) results from other 
studies are conclusive and broadly applicable, (3) cost or effort 
involved in doing the research is high relative to potential 
benefits, or (4) cost of implementing the results is too high. 

If the problem is researchable, what specific questions 
remain to be answered? Perhaps some parts of the problem 
seem solved, but others need further investigation. For example, 
a new herbicide may have been demonstrated safe and effec-
tive in several nurseries, but optimal application rates and 
timing remain to be determined for your nursery condit ions. 

is a designed experiment needed? Perhaps the attributes 
of designed experiments (see 28.4.2) are not required and an 
operational trial (see 28.4.1) will answer the questions for less 
cost and effort. 

To what population should the results apply? The infer-
ence space [2, p. 84] or range of validity of the results must be 
defined. For instance, should the results and conclusions apply 
to (1) 1+0 Douglas-fir in one particular nursery block, (2) 1+0 
Douglas-fir in poorly drained parts of the nursery, (3) 1+0
Douglas-fir in all bareroot nurseries west of the Cascade 
Mountains, or (4) 1+0 and 2+0 conifers in all bareroot nurser-
ies west of the Cascades? 
 

28.6.2 Setting objectives 
Delineating the experimental objectives serves to clearly 

state the problems to be addressed and sets the framework for 
specifying experimental methodology [3, p. 38]. Objectives 
can take several forms: (1) to determine the effects of a certain 
factor, for example, of fall fertilization with N; (2) to investigate 
interactions, for example, of irrigation and fertilization; (3) to
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find optimum application rates, for example, of herbicides or 
fertilizers; and (4) to develop prediction equations, for  example, 
of the average shoot:root ratio of a batch of seedlings, given 
their average height, caliper, and seed source. Although statis-
tical null hypotheses are often implied when research objec-
tives are stated, their explicit delineation is left until the 
experiment has been designed (28.6.3.5).  

Objectives should be ranked to ensure that the experiment 
is  designed  to  answer  the  most  important  questions  first. 
Often, it is possible (for example, by split -plot design) to 
increase the precision with which certain treatment means are 
estimated or hypotheses tested by sacrificing precision on 
others.  
 
28.6.3 Planning the experiment 

The nursery researcher frequently directs the early efforts 
of planning an experiment (see 28.6.3.1 to 28.6.3.3), whereas 
the biometrician may direct the later ones (see 28.6.3.4 to 
28.6.3.7). Though the leader may change, a true team effort is 
required throughout to ensure that the experiment meets its 
stated objectives. For instance, the nursery researcher may list 
factors  to  investigate  and  the  biometrician  then  help  deter-
mine the levels at which to test each factor. Conversely, the 
biometrician may set a minimum number of replications needed 
and the nursery researcher put an upper practical limit on the 
number feasible. A constant balance is needed between what 
might appear statistically favorable and what is practically 
suited to experimental conditions in the nursery. 
 
28.6.3.1 Choosing treatments 

Controls and standards.—Nursery experiments most of-
ten require a treatment that serves as the basis against which 
the effectiveness of other treatments is judged. Controls and 
standards both serve this purpose. 

A control treatment is the zero-level application of a 
factor; no wrenching, 0 pounds of N fertilizer, no irrigation, 
and  no  herbicide  are  examples of controls that might be used 
to judge whether particular treatment levels of wrenching, N 
fertilization, irrigation, and herbicide spray, respectively, were 
effective. Control treatments are particularly useful when an 
unproven  or  new  factor  is  being  tested  but are less so when 
the experimental objective is to find an optimum level of a 
"known-effective" factor. 

Standard treatments are the "standard operating pro-
cedures." A new treatment must often prove itself against the 
standard to justify altering current practices. For instance, a 
new alignment of personnel in the packing shed must be 
proven superior to the current one to justify switching.  

Single-factor versus multifactor experiments.—Single-  
factor experiments, in which only one condition (factor) is 
varied among the treatments, are commonly used in nurseries 
at either end of the research process: operational trials or 
final-stage experiments. In operational trials, the researcher 
might test three new herbicides for control of grasses or 
compare two seeders for evenness of sowing; in both cases, 
only one factor, herbicide or equipment type, is varied. In the 
final  stages  of  experimentation,  the  researcher  often  knows 
the proper levels at which to control nontreatment conditions 
and varies only the critical factor of interest (say, herbicide 
application rate) to find the optimum level [6, p. 152]. 

Most nursery experiments lie between these two extremes, 
exploring the effects of one factor (say, bed density) over 
various levels of other factors (sowing dates and species). Such 
multifactor experiments often test, for example, whether the 
most effective bed density is the same for all sowing dates and 
species. 

Factorial experiments.—Factorials are by far the most 
common arrangement of treatments in multifactor experi-
ments. Factorial experiments test each level of each factor at 
all levels of the other factors. In a three-factor experiment with 
two bed densities, three N levels, and two seed zones of 
Douglas-fir, there are 2 x 3 x 2 = 12 treatments. Each treat -
ment consists of a specified level of each of the three factors—
for example, treatment 1 might be low bed density, no N (the 
control), and seed zone 062; 12 separate treatments are re-
quired to test each factor across all levels of the other factors. 
These 12 treatments can be applied to experimental plots in a 
variety of experimental designs (CRD, RCB, or Latin Square); 
"factorial" just defines the number and structure of the treat -
ments, not the field design. 

The nature of factorials and the reasons for their impor-
tance are discussed fully in Cox [7, p. 94]. Briefly, factorials 
allow explicit investigation of the interaction among factors. If 
interactions are not significant, then factorial experiments ex-
tend the range of validity and increase the precision of estimat -
ing factor effects, relative to separate experiments of the 
individual factors. For example, the effects of N and P may be 
investigated either in separate experiments or in one factorial 
experiment. If experiments are done separately, N is held at a 
constant (standard) level while multiple P levels are investigated; 
conversely, P is held at a constant level while multiple N levels 
are investigated. The factorial allows elucidation of interac-
tions because rates of N and P are varied together so that all 
combinations of both factors are applied; for example, N may 
increase caliper only in the presence of high P levels. In the 
absence of interactions (that is, if the effects of N do not 
depend on the level of P, and vice versa), the range of validity 
is extended because the researcher knows that each nutrient is 
effective over several levels of the other, not just the standard. 
The precision of estimating effects is also increased [7, p. 94]. 

Factorials are not without their drawbacks [6, p. 152]. But 
for most nursery experiments, these are more a matter of the 
complexity of the problem than the factorial itself. Factorials 
can often become large (for example, a 3 x 3 x 5 factorial has 
45 treatments), making them difficult to implement and, 
sometimes, interpret; however, the efficiency of factorial 
arrangements, compared to that of separate experiments, in-
creases for large, multifactor experiments.  

Choosing factors.—While mainly directed to factorials,  the 
discussion here applies rather broadly to choosing factors in 
multifactor experiments [7, p. 134]. For the most part, multifac-
tor experiments examine only one or two factors of primary 
interest; these primary factors are the reason for the experi-
ment. Supplementary or subsidiary factors [6, p. 151] may 
be  added  to  (1)  shed  light  on the mode of action, (2) extend 
the range of validity, and (or) (3) determine interactions with 
the primary factor(s). 

In  an  experiment  testing  the  effects of fall N fertilization 
on  the  frost  hardiness  of  2+0 Douglas-fir, the primary factor 
is N; supplementary factors might include seed zone and irriga-
tion.  The  N  levels  are  tried  (1) at various irrigation levels, 
both  to  examine  interactions  (perhaps  standard  irrigation  is 
not best with fall fertilization) and to elucidate N's mode of 
action in increasing frost hardiness (perhaps moister condi-
tions promote the physiological actions of N relating to frost 
hardiness), and (2) at different seed zones, to provide a wider 
range of validity if N acts consistently across all the zones 
tested. The nursery researcher should choose primary factors 
that meet the experimental objectives and supplementary 
factors  that  ensure  general  conclusions  can  be  drawn about 
the primary factors over the intended population. 
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Choosing factor levels.—In choosing levels at which to 
test  each  factor,  the  nursery  researcher  must  again consider 
the experimental objectives and intended population. For quanti-
tative factors whose levels represent points on a continuum 
(e.g., pounds of fertilizer), the range of levels should bracket 
the range expected to be operationally feasible [7, p. 141]. For 
example, the lowest level of fertilization or chemical applica-
tion is often zero-the control: the upper level is chosen on the 
basis of experience, cost, or other information as the upper 
practical extreme. How many levels and where to position the 
levels depend on the nature of the response curve (linear, 
quadratic, asymptotic) and the purpose of the experiment (see 
[7, p. 141] for a full discussion). For many nursery experiments, 
three or four well-spaced levels (including a control, if ap-
propriate) are sufficient. 

For supplementary factors included to extend the range of 
validity or to detect interactions, a few extreme levels often 
suffice. For example, if N fertilizer causes similar responses in 
extreme seed sources of coastal Douglas-fir—say, west Cascade, 
valley, and coastal—it may be safe to extend the experimental 
conclusions to all coastal Douglas-fir. And if N shows no inter-
action with P over a wide range of levels, then inferences over 
the  entire  range  are  valid.  The  only  caution  here  is  to use 
factor levels of interest. If Cascades Douglas-fir is not grown at 
the nursery, then why include it unless more fundamental 
questions about the Douglas-fir species are of interest. Again, 
keep the population of interest in mind when choosing both 
factors and their levels.  

 
Choosing levels for nontreatment conditions.—Once the 

treatments have been determined, it is critical that the condi-
tions or factors not varied are held constant at meaningful 
levels. For example, in an experiment testing the relative 
effectiveness of two root-wrenching depths, only depth is varied. 
Other factors—such as seed zone, stratification period, sowing 
date, and fertilization and irrigation regimes—are held constant. 
In this instance, the rate of irrigation may have a dramatic 
impact on treatment effectiveness; thus, its level (though not 
varied) is critical to interpreting the results. Often, but not 
always, the nontreatment factors are held constant at their 
normal or standard levels to test the effectiveness of the 
treatments if everything else is done as usual. 
 
28.6.3.2 Choosing variables to measure 

The nursery researcher is faced with a wide array of vari-
ables that could be affected by or could affect treatment 
responses. Which variables to measure depends on how much 
time and effort are available and how likely it is that a particu-
lar variable may be of practical value. Variables measured fall 
into three broad categories; keeping these categories in mind 
can often help researchers decide which variables are pertinent. 

 
Response variables.—Response variables are those that 

the treatments were meant to test. They are usually measured 
on all observational units (items to be experimentally mea-
sured or observed; for example, seedlings) in a measurement 
plot (portion of the experimental plot actually measured), then 
aggregated to obtain a plot mean or sum. The most critical of 
these are usually delineated directly in the experimental 
objectives. Height, caliper, shoot:root ratio, number of plant-
able seedlings, foliar N levels, frost hardiness, and outplanting 
growth and survival are examples of often-measured nursery 
response variables.  

Response variables may be either quantitative (numeric) or 
categorical (falling into discrete classes). The numeric are rou-
tinely analyzed with a technique termed analysis of variance, 
the categorical by other techniques [17] or by assigning num-
bers to the classes (categories) to make them pseudonumeric. 
For example, six vigor classes might arbitrarily be assigned the 

numbers 1 (low) to 6 (high). Caution must be used here be-
cause this implies that class 6 is 1 unit better than class 5, 2 
units better than class 4, and so on. The biological basis of 
such assignments should be weighed. For categorical data, 
more classes mean more discrimination among treatments 
unless responses cannot be accurately assigned. Four and six 
classes are often useful numbers of classes for assigning bio-
logical responses; an even number is recommended because of 
the psychological tendency of observers to overassign re-
sponses to a middle category (such as to the third class, if five 
classes were available). 

 
Concomitant variables.—Concomitant variables are those 

measured on each experimental plot or observational unit 
(seedling), for the purposes of using covariance analysis (see 
28.5.3.4). The precision of the experiment can be increased by 
adjusting response variables to a common, average level of the 
concomitant variable. Concomitant variables—for example, 
pretreatment soil N levels, initial bed density, or soil textures—
must be measured on each experimental plot, be independent 
of treatment effects, and be numeric. 

 
Explanatory variables.—Explanatory variables are often 

measured  to  shed  light  on  underlying  principles  of  action 
or to document experimental conditions. These variables can 
be measured at any level. On the experimental-plot level, the 
nursery researcher might test to see whether fertilizer or chemi-
cals were applied properly by assaying each plot shortly after 
application. On the block level (if beds are blocks), the re-
searcher might monitor plant water potential at various points 
in nursery beds situated varying distances from the irrigation 
lines; large differences in seedling growth from block to block 
may then be related to water status. Finally, on the nursery 
level, the researcher might monitor climatic conditions relative 
to sowing date; early sowing may pay handsome dividends in 
some years, whereas its effects may be disastrous during other 
years with different spring weather. 

In general, explanatory variables are measured for biologi-
cal or physical, not statistical, reasons. They are often used in 
the  deductive  process  to  extrapolate or "explain" experimen-
tal results.  
 
28.6.3.3 Determining plot size 

Determining the appropriate size and shape of experimen-
tal plots requires both statistical and practical considerations. 
For a specified amount of land devoted to an experiment, the 
number of replications necessarily decreases as plot size 
increases. As a rule, once a minimum plot size is reached, 
precision is increased more effectively by adding replications 
than by enlarging plots [9, p. 3]. Practical considerations, sub-
sequently described, often loom large in determining this mini-
mum plot size. 

Remember that the experimental plot (say, a length of 
nursery bed) is the smallest physical unit to which a treatment 
is applied independent of all other treatments. All observa-
tional units (seedlings) within a plot do not have to be measured. 
It is largely the responsibility of the nursery manager to ensure 
that the total size of the experimental plot satisfies practical 
constraints and of the researcher and biometrician together to 
determine the size of the measurement plot within each experi-
mental plot. 

Plot shape, usually constrained by bed shape in forest -tree 
nurseries, will not be addressed here; references include Le 
Clerg et al. [12] and Gomez [9]. 

 
Experimental plots.—Practical considerations influencing 

size of the experimental plot fall into three overlapping 
categories: operational constraints, representation, and inde-
pendence.
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• Operational constraints: These refer to physical limita-
tions in the ability to apply treatments independently to 
small plots. Such limits often lead to split -plot designs 
(see 28.5.3.3), in which one factor (the whole-plot factor) 
is applied to a much larger plot than other factors (subplot 
factors) in the experiment. Irrigation is a good case in 
point; the physical nature of the system often requires 
that several beds on either side of a line must receive the 
same irrigation level. Thus, a group of beds is the small-
est physical unit to which the researcher can indepen-
dently (randomly) assign different irrigation levels. Other 
treatments (the subplot treatments) in the split-plot 
design, such as fertilizer levels or different wrenching 
techniques, can be randomly assigned to smaller plots 
within this group of beds.  

For multifactor experiments, the researcher should con-
struct a brief list detailing the operationally feasible plot 
sizes for the factors under investigation. This list also is 
useful for determining experimental designs and conduct-
ing the experiment. 

 

• Representation: In most nursery experiments, it is criti-
cal that the conditions imposed by the experimental 
treatments be representative of those same treatments 
applied operationally [7, p. 194]. For instance, the artifi-
cial nature of irrigating by hand may be intolerable even 
though it allows smaller plot sizes. Many treatments ap-
plied in nursery experiments have start -stop problems in 
the sense that representative treatments are not attained 
at the beginning and ending of each plot; for example, 
many seeders disperse seed unevenly for the first and 
last foot or two. Thus, the total plot size must be large 
enough to leave a representative measurement plot in 
the "middle," the "ends" serving as borders.  

Representation, as used here, relates to bias and inaccu-
racy that can result from nonrepresentative plots.  Careful, 
precise experimental technique cannot overcome bias re-
sulting in this manner. For example, in time and motion 
studies such as might be conducted to investigate alterna-
tive packing-line arrangements, the experimental time 
allotted must be long enough to accurately represent the 
operational situation. Some arrangements, faster in the 
short run, may cause workers to take more breaks or to 
suffer more illness or boredom when imposed under 
normal, operating conditions.  

Representation is less important in fundamental studies 
investigating the basic biological principles underlying 
treatment response. There, statistical precision and choice 
of treatments to illuminate reasons for response are most 
important; hand application of fertilizer or irrigation and 
manual sowing (or thinning to desired bed densities)  may 
be entirely suitable. 

 

• Independence: Treatment application and (or) response 
on a particular plot should not influence response on 
adjacent plots [7, p. 196]. For example, spread of sprays, 
fertilizer, and water can unknowingly affect growth on 
near-by plots. In time and motion studies, two packing-
line arrangements tried on successive dates might allow 
a carry-over effect from the first day's arrangement to the 
second. Researchers should make every effort to ensure 
that experimental plots are large enough for measure-
ment plots to respond independently. 

 
Measurement plots.—In most field experiments, the ac-

tual measurement plot is a subplot nestled within the experi-
mental plot. The unmeasured observational units (seedlings) 
surrounding the measurement plot buffer that plot from edge 
effects and from effects caused by treatments on other experi-
mental plots.  

In addition to independence and representation, the num-
ber of trees in a measurement plot and its orientation and 
location are the major concerns.  
 

• Edge effects: These occur both on the ends and sides of 
nursery-bed plots. As a very general rule, end effects are 
bad (artifacts of the experiment), and side effects are
good (representative of the nursery). 

End effects usually occur as a result of stop-start  prob-
lems associated with treatment application to small ex-
perimental plots (see Representation, just discussed). 
They should be avoided by placing measurement plots 
away from the ends of experimental plots; these ends 
should be left to border the measurement plot, buffering 
it from the external influences of adjacent treatments and 
making it more nearly like a randomly chosen location in 
the middle of an operational bed. 

Side effects occur because the outermost drill row along 
each side of the nursery bed tends to grow and respond 
to treatment differently than the inner rows. However, this 
type of edge effect would occur to the side rows if the 
treatment were applied on an operational scale and in 
practical nursery experiments. Because the inferences 
drawn should pertain to the population of all seedlings, 
these outermost rows should be included in the measure-
ment plot to make it as representative as possible of the 
population of interest. Thus, a measurement plot for 
practical experiments should be a swath that stretches 
across the entire seedbed; each row contributes equally 
to the plot mean just as each row contributes equally to 
the harvestable crop. 

 
• Response variable: Depending upon the trait being 

measured, fewer or more trees need be included in the 
measurement plot to obtain a precise plot mean for the 
treatment. The amount of effort and expense required to 
obtain each measurement also influences the number 
included. As a general rule, for traits like height, caliper, 
and number of plantable seedlings, a 1-foot section of 
bed provides a more than adequate number of seedlings 
(~ 100 at 25/ft 2) and is easy to lay out. 

 
• Subsampling: Multiple measurement plots are often 

placed within one experimental plot either to allow for 
multiple destructive sampling throughout the growing 
season (e.g., when shoot:root ratio is assessed at multi-
ple times during the growing season) or to provide an 
estimate of within-plot variability. In the case of such 
subsampling,.the following considerations apply to each 
measurement plot: (1) handling of one measurement plot 
should not influence response on adjacent ones, often 
necessitating that buffer areas be left between measure-
ment plots; (2) each measurement plot should represent 
the population of interest; and (3) enough seedlings should 
be included in each measurement plot to provide a pre-
cise plot mean. 

 
28.6.3.4 Choosing an experimental design 

By this point, tentative decisions have been made (mostly 
by the nursery researcher); regarding factors and factor levels 
to investigate, variables to measure, and practical limits on 
experimental- and measurement-plot sizes. The biometrician 
and researcher now employ the concepts of randomization, 
replication, and error control (see 28.5) to develop a statisti-
cally and operationally appropriate experimental design. 

Applying these concepts to nursery field experiments pro-
duces frequent use of only a few common designs. CRDs (see 
Figs. 4a and 5a), in which the random assignment of treat -
ments  to  plots  is  unrestricted,  are  not  common  in   nursery 
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experimentation. A logical field grouping of experimental plots 
almost always exists such that plots within a group are more 
similar to each other with respect to water drainage, proximity 
to irrigation, and (or) soil characteristics than are plots from 
different groups. As a result, the RCB design (see Figs. 5b and 
6) is the most commonly used in nurseries. In addition, RCBs 
are relatively easy to lay out and analyze and are relatively 
insensitive  to the  accidental loss  or  destruction of a plot or 
two. Latin Squares are used, though less frequently, when 
bidirectional field gradients exist; however, they suffer from 
the drawbacks discussed in section 28.5.3.2. 

For multifactor experiments, especially those investigating 
irrigation, sowing date, or wrenching, split-plot designs are 
common (see Fig. 6). These most often have the whole-plot 
factor (such as irrigation) arranged in randomized complete 
blocks, with the treatments of one or two subplot factors (such 
as three levels of fertilization and two bed densities) arranged 
totally at random within each whole plot. Although these 
designs are common, more complex ones are warranted for 
large experiments that "mushroom" and would occupy too 
much space and require too much effort if many replications of 
each treatment were applied. The biometrician and researcher 
must confer and be innovative to arrive at appropriate designs 
(such as fractional factorials) for these more complex experi-
mental situations.  
 
28.6.3.5 Determining the number of replications 

Theoretical considerations.—Many factors (practical and 
statistical)  impinge  on  the number of replications required for 
a particular experiment. The effects of these factors are de-
scribed here, both mathematically and intuitively, but under-
standing their effects does not depend on the mathematical 
relationships; it is added only for completeness. The practical 
nursery implications for each factor are delineated.  

For RCB designs, the factors influencing the number of 
replications (i.e., blocks) interact through the formula 
 

4tα2 (CV)2  n = 
D2  

(1) 

 
where n  =  number of blocks 
          D =  detectable level of difference (%) between two 

treatments 
          tα =  tabular  value  of  t  for  a  specified Type 1 error 

rate (α)  and number of degrees of freedom 
        CV =  coefficient of variation (%) obtained as (mean 

square error)1/2/experimental mean. 
 

The detectable level of difference (D) is that difference 
between two treatment means (expressed as a percentage) 
which the experiment is able to declare significant. For example, 
if height of 2+0 seedlings increases from 15 to 18 inches as a 
result of fertilization, D = 20% (a 20% increase). In general, 
smaller differences are more difficult to detect (declare statisti-
cally significant) and require more replications. The researcher 
should decide in advance, roughly, the differences among 
treatments that represent biologically or practically important 
responses.  

Recall that the Type 1 error rate (α) is the probability of 
declaring treatments significantly different when, in fact, they 
are not. The nursery researcher will necessarily set a low Type 1 
error rate if a high degree of confidence is required before 
drawing conclusions from an experiment. The higher level of 
confidence required necessitates more replications to declare 
results significant. For example, for a given level of detection 
(say, D = 20%), more replications are required to declare 
results  significant  at  α = 0.01  (99% confidence level) than at 
α = 0.05 (95% confidence level) (Fig. 7). 
 

 
 
Figure 7. Effects of the number of blocks on the level of detecta-
ble difference (D) among treatments for two levels of inherent 
variability (coefficient of variation, CV, = 10 and 20%) and two 
levels of Type 1 error rate (a = 0.05 and 0.01) for an RCB with 
three treatments. Dotted line Indicates the number of blocks 
required at two a levels when D = 20%. 
 

In principle, the coefficient of variation (CV) measures the 
background variation among plots receiving the same treat -
ment as a percentage of the treatment mean. Thus, for a given 
level of detection, more replications are required for traits with 
higher CVs because the higher variability means larger experi-
mental error (Fig. 7). For nursery experiments, CVs are influ-
enced by (1) the response variable (e.g., root-growth capacity 
is extremely variable), (2) the experimental material (1+0 heights 
are  more  variable  on  a  percentage  basis  than  2+0 heights), 
and (3) the variability among field plots. CVs between 10 and 
20% are common in nursery field experiments.  

In general, experiments with more treatments require fewer 
replications. In rough terms, each treatment provides an esti-
mate of experimental error via the variation among the experi-
mental plots receiving that treatment; these are pooled (com-
bined) to give an average "experiment-wide" estimate of error. 
More treatments result in more of these individual estimates 
and thus a more precise estimate of the experimental error. 
When  both  the  replications  and the number of treatments are 
 

 
 
Figure 8. Effects of the number of blocks on the level of detecta-
ble difference between two treatment means for an RCB with 
different numbers of treatments (3, 6, 9).  
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small, an increase in either is especially effective in increasing 
the sensitivity of the experiment to detecting differences (Fig.  8). 

Appropriate experimental designs can effectively reduce 
the number of replications needed for a given desired level of 
detection by eliminating extraneous sources of experimental 
error from treatment comparisons. This increases precision by 
reducing the experimental error and thus the CV. Furthermore, 
subsampling within an experimental plot can sometimes re-
duce the number of replications needed by providing an addi-
tional estimate of experimental error. The use of subsampling 
depends on many factors [4] but is most beneficial when the 
number of replications is limited for practical reasons.  

 

Practical recommendations.—In addition to the previously 
stated statistical considerations, the number of replications 
required is influenced greatly by several practical factors. If the 
chance of incurring missing plots is high, more replications are 
needed. In addition, the accuracy of the experimental work is 
extremely critical in reducing the CV and thus lowering the 
number of replications required.  

In general, three replications are a minimum, and more are 
required if (1) the number of treatments is small, (2) the re-
sponse variable has a high CV, or (3) small differences should 
be detectable with high confidence. When estimates of the 
factors in Equation I are available, the number of blocks (for 
an RCB) can be calculated. When data are not available, a rule 
of thumb [ 14] is to choose the number of blocks, n, such that 
(n - 1) (t - 1) > 12, where t is the number of treatments; this 
ensures 12 degrees of freedom for estimating experimental 
error. 
 
28.6.3.6 Delineating the field layout 

An appropriate field layout matches the experimental de-
sign to the field gradients existing in the nursery. For RCBs, 
plots within a block should be as similar as possible; this 
necessitates close attention to water and soil gradients. It is 
often effective to block on nursery beds because plots within a 
bed are similar. Sometimes, however, more similarity can be 
achieved by blocking across beds, combining plots in several 
adjacent beds into the same block. It is frequently necessary to 
skip  over  certain  local  areas in the nursery that are dissimilar 
to other plots being included in a block. For example, rela-
tively narrow, low-lying areas might be dissimilar to any of the 
other plots within a block and, if so, should be excluded from 
the experiment; these serve as buffers and are ignored for the 
purposes of experimentation. 

Often, different blocks are put in different nursery fields. 
This has the advantage of broadening the range of validity to 
the entire nursery and makes plots within a block (field) more 
similar, thereby reducing experimental error. Attention should 
also be paid to possible carry-over effects resulting from previ-
ous nursery treatments. For example, suppose one part of the 
nursery  had  been  hydromulched  and  another  part  mulched 
with sawdust. Because these two treatments could have lasting 
carry-over effects, plots within a block should come from areas 
receiving only one of the prior treatments.  
 
28.6.3.7 Outlining the analysis 

At this point, the biometrician should outline the form of 
the analysis, usually by delineating the sources of variation and 
degrees of freedom in the analysis of variance. Are the 
underlying hypotheses and probable precisions associated with 
the F tests in line with experimental objectives? What are the 
biological and practical implications of finding either signifi-
cant or nonsignificant results for each test? If the chances are 
high that hypotheses will not be tested precisely enough, an 
alternate design is warranted. If the new design requires more 
effort or is not feasible, perhaps the experiment should be 
delayed or cancelled.  

28.6.3.8 Documenting the plan 
The experimental plan is often documented in the form of a 

research proposal or study plan by outlining the problem 
objectives and proposed experimental design as already de-
scribed (see 28.6.1 to 28.6.3). This allows peer review, aids 
analysis, and documents the experiment in case of personnel 
turnover. Methods of writing study plans vary widely, depend-
ing upon the level of formality required.  

In addition to the written description, the experimental 
design itself and the field layout are best documented by an 
analysis of variance table and a schematic diagram of the field 
plot arrangement. The table describes the form of initial analy-
sis and succinctly states hypotheses under investigation. The 
schematic diagram, essentially a map, shows the layout of the 
treatments as they have been randomized and assigned to 
nursery plots; often, the positions of measurement plots within 
experimental plots are shown, as are any local areas omitted 
from the experiment. These diagrams can be simple or detailed; 
cryptic schematics are shown in Figures 3 to 6. The schematic 
(1) reinforces the written description of the experimental de-
sign by explicitly depicting the assignments of treatments to 
plots from which the analysis of variance can easily be 
constructed, (2) is useful during the experiment for applying 
treatments and collecting data, and (3) allows plot means to be 
charted  as  they  occur  in  the  field,  often  revealing spurious 
local trends.  

The importance of documenting the experimental plan can-
not be overemphasized; yet, too often, the effort involved 
hinders executing the research. Each researcher must find the 
most suitable compromise. Handwritten notes on the objec-
tives and the experimental plan, including a list of factors and 
variables to be investigated, and a schematic map of the field 
plot layout are a minimum . 
 
28.6.4 Conducting the experiment 
 
28.6.4.1 Employing proper technique 

Employing proper technique means conducting the experi-
ment in a manner maximizing both precision and accuracy. 
High accuracy is achieved by using properly calibrated ma-
chinery and experienced, observant workers with proven good 
judgment and by closely following the experimental plan. Pre-
cision is increased by uniform application of treatments, metic-
ulous measurement technique, and, in general, care and 
common sense. 
 
28.6.4.2 Using the experimental design 

Return,  for  a  moment,  to  the  concepts  of randomization 
and blocking (see 28.5). When possible, seedlings should be  
treated, lifted, and measured according to the randomization 
scheme documented in the schematic diagram. As an extreme 
breech of this, consider the bias potentially introduced by first 
lifting and measuring all replicates of treatment 1. then treat -
ment 2, and so on. As the experiment progresses, lifting 
conditions may change and measurement techniques become 
more refined. These effects can be randomized over treatments, 
thereby minimizing bias among treatment comparisons, by 
adhering to the original randomization scheme in all phases of 
the experiment. 

To maximize the benefits from blocking, treat and measure 
all plots within a block before moving to other blocks. If 
seedlings in an entire experiment cannot be sown, lifted, or 
measured on the same day, do different blocks on different 
days. Then, any day-to-day differences in conditions tend to 
average out, influencing all plots (treatments) within a block 
similarly. When possible, one team of observers should lift and 
measure  all  seedlings in plots within a block. If one worker lifts 
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carelessly and measures trees in inches instead of centimeters, 
experimental accuracy and precision will be affected; however, 
any errors introduced will not bias treatment comparisons if that 
worker lifts and measures all t reatments within a block because 
all treatments will have received the same poor technique. 
 
28.6.5 Interpreting experimental results 

After editing the data to eliminate data-collection errors, 
descriptive statistics (point estimates) must be calculated from 
the data set and inferences made about the population of 
interest (see 28.5.1). The analysis itself is beyond the scope of 
this chapter. But if the experiment is properly designed and 
conducted, the descriptive statistics should be unbiased, pre-
cise estimates of population parameters, and the level of uncer-
tainty associated with those estimates and with tests of 
hypotheses should be low. Nevertheless, interpreting the prac-
tical implications of these statistical tests and inferences raises 
some problems and is nearly always the province of the 
researcher, not the biometrician. Three problems of interpreta-
tion are considered in this section. 
 
28.6.5.1 Statistical significance 

The nursery researcher must always interpret the practical 
significance of experimental results in light of their statistical 
significance. However, three different situations may arise in 
which the researcher relies on deductive reasoning based on 
knowledge  and  personal  experience  to  question  or  even ig-
nore the statistical inferences obtained from data analysis.  

First, statistically significant differences among treatments 
may be too small to be practically important. This implies that 
the  experiment  was  more  sensitive  (powerful)  than required 
for that particular hypothesis or treatment comparison. For 
instance, if doubling the amount of N fertilization results in a 
statistically significant (say, at the 99% confidence level) in-
crease  in  average  2+0  seedling  height  of  0.5 ± 0.2 cm, then 
the  experiment  was  extremely  sensitive.  Though  confident 
that this increase was not due to chance, the researcher may 
still decide that the small increase does not warrant the extra 
cost of the additional fertilizer. 

Second-the reverse of the first case—a treatment compari-
son or hypothesis may not be statistically significant; yet the 
magnitude of the differences involved may be biologically or 
practically significant. Suppose that fall N fertilization of 2+0 
seedlings results in a 20% increase in root-growth capacity and 
a  40%  increase  in  early-winter  frost  hardiness, compared to 
the controls. If neither of these differences approaches statisti-
cal significance, one of two alternatives exists. Either the vari-
able nature of the traits has resulted in large differences 
occurring by chance or a Type 2 error (β) is being made. Recall 
that Type 2 errors result when the experiment is not powerful 
enough to declare differences even though they, in fact, exist. 
When differences of practical importance are not statistically 
significant (say, at α = 0.05), the experimenter can calculate the 
magnitude of differences required to approach statistical 
significance. If values of frost hardiness must differ by 100%, 
the researcher would question the power of the experiment and 
perhaps plan a better one. 

Third, a statistically significant result may contradict  biologi-
cal principles or past experiences. In this situation, (1) results 
may be spurious (on the average, 1 out of 20 tests at α = 0.05 
will be incorrectly declared significant), (2) treatments may 
have been mislabeled, or (3) the biological reasoning may be 
flawed.  The  experimenter  must  be  open  to  all eventualities 
and reexamine both the planning and conducting of the experi-
ment and the biological theory underlying it to see where the 
fault lies. Sometimes, the statistically significant difference has 
a low range of validity—for example, when two treatments 
declared  statistically  different  were  tested in only one part of 

the nursery for a single growing season. This experimental 
design may lead to spurious results, especially if plot location 
or growing season were atypical. Such tests of significance 
require scrutiny. 
 

28.6.5.2 Correlation versus causation 
Experiments are most often conducted to establish cause-

effect  relationships of practical significance; that is, the pres-
ence of a certain level of a factor under investigation causes an 
identifiable  response  in  a  measured variable. The experiment 
is set up to determine these cause-effect relationships by 
specifically controlling the factor levels. However, correlations 
among variables not being controlled may also be found dur-
ing experiments, and while useful, these must be interpreted 
with extreme caution. 

For example, an experiment testing different levels of N 
fertilization may indicate that fertilized seedlings are signifi-
cantly taller than controls. If soil P levels are also measured 
(but not controlled) on each plot, there may be a strong, 
statistically significant correlation indicating that high soil P 
levels are associated with faster growth. However, it is not 
correct to conclude that higher P levels cause faster growth. P 
may not be a limiting element for growth at all but may simply 
be indicative of (a proxy variable for) the level of organic matter 
on a plot. If more organic matter causes faster growth and 
produces more soil P, then the correlation between P and 
growth will be high even though no causality exists between 
the two variables. The pitfall of inappropriately assigning cau-
sality to such correlations cannot be overstressed.  
 

28.6.5.3 Interactions 
Statistically significant interactions among factors are com-

mon in the biological sciences. When more than two factors 
are involved, the practical interpretation of the interaction may 
be difficult; however, proper interpretation of two-factor inter-
actions is essential to drawing correct conclusions from nur-
sery experiments. A range in magnitude of these interactions 
can exist, and three different types are considered here. 

For a two-factor experiment investigating the effects of 
three levels of fall N fertilization and two levels of irrigation on 
early-winter frost hardiness of 2+0 Douglas-fir seedlings, three 
hypothetical outcomes (Fig. 9) are considered. Suppose that 
low water levels have the consistent effect of "shutting seed-
lings down," causing them to enter dormancy early, and there-
fore increasing early-winter frost hardiness. If N aids this 
metabolic transition independent of water level, then no inter-
action between N and water exists (Fig. 9a). Now suppose that 
increasing N levels increases early-winter frost hardiness re-
gardless of water level, but the rate of increase is faster when 
water levels are high. That is, N is more effective in the pres-
ence  of  high  water  levels  (perhaps  because  the  additional 
water is needed for N to better aid the physiological transition). 
This type of interaction—in which two factors affect each other, 
but trends within each factor are similar when plotted over a 
second factor—is called a scale effect (Fig. 9b). Note that the 
practical interpretation in both cases a and b is very similar: 
high N and low water levels result in superior early-winter frost 
hardiness.  

But when one factor acts differently in the presence than in 
the absence of a second factor, levels of the first factor change 
their ranking, depending upon the level of the second factor. 
For example, high N levels may be more effective in the 
presence of high water levels, but low N levels may be more 
effective in the presence of low water levels (Fig. 9c). Perhaps 
too much N "burns" the seedlings and retards frost -hardiness 
development if seedlings are not well watered. This type of 
interaction, called rank change, makes it impossible to de-
scribe the effects of N without considering the particular water 
level applied and greatly alters the conclusions drawn from the 
experiment.
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Figure 9.  Hypothetical  effects  of  two  factors,  irrigation  level  (H = high,  L = low)  and  fall  nitrogen  fertilization  (NI,  N2,  N3),  on 
early-winter frost hardiness of 2+0 Douglas-fir for (a) no two-factor interaction, (b) scale-effect Interaction, and (c) rank-change Interaction. 

 
 

28.7 Conclusions and 
Recommendations 

The main goal of nursery research is to develop new tech-
niques that produce high-quality seedlings in a cost-effective 
manner. After the initial steps of identifying a problem area 
and setting experimental objectives, the nursery researcher 
plans an experiment, by choosing treatments to test and vari-
ables to measure, determining plot sizes, selecting an appropri-
ate experimental design, determining the number of replications, 
and delineating the field layout (assigning treatments to plots). 
The experiment is then conducted in a manner to maximize 
precision and accuracy of experimental results. Finally, the 
results are analyzed and interpreted in light of the researcher's 
intuition and personal experiences, and recommendations are 
made to implement the conclusions.  

Applying a very few statistical concepts (mainly randomiza-
tion, replication, and blocking) in a common-sense manner can 
aid researchers at each step of the nursery research process. 
While  implementing  the   design  and  interpreting the results, 
the researcher must always balance statistical with biological 
and practical considerations to achieve an experiment that 
meets its objectives with an appropriate expenditure of effort. 
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