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Abstract: Since the early 20th century, silviculturists have recognized the importance of planting
seedlings with desirable attributes, and that these attributes are associated with successful seedling
survival and growth after outplanting. Over the ensuing century, concepts on what is meant by a
quality seedling have evolved to the point that these assessments now provide value to both the
nursery practitioner growing seedlings and the forester planting seedlings. Various seedling quality
assessment procedures that measure numerous morphological and physiological plant attributes
have been designed and applied. This paper examines the historical development of the discipline
of seedling quality, as well as where it is today. It also examines how seedling quality is employed
in forest restoration programs and the attributes that are measured to define quality. The intent is
to provide readers with an overall perspective on the field of seedling quality and the people who
developed this discipline from an idea into an operational reality.
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1. Introduction

Forest restoration is a complex process that requires many steps to ensure successful forest
establishment. These steps include choosing suitable tree species and provenance, applying
nursery cultural practices to produce quality seedlings, ensuring proper seedling handling practices,
and making site modifications to improve the physical environment of the restoration site [1,2].
Implicit within a seedling production program is the recognition that inherent species attributes [3]
and phenotypic traits created during nursery culture [4] are both important in determining initial
seedling field performance. Thus, seedling quality is a critical component in ensuring a successful
forest restoration program.

This review summarizes the evolution of seedling quality from three perspectives. First,
a historical perspective outlines a timeline for the evolution of this discipline over the past century.
Second, the application of seedling quality within restoration programs is discussed from the
perspectives of monitoring the process and monitoring the product. Third, various plant attributes
that have been considered or are currently in operational use for defining seedling quality are
discussed. The intent of this review is to provide nursery practitioners and foresters with a better
understanding of seedling quality so they can effectively apply these assessment practices in their
forest restoration program.

2. Historical Perspective on Seedling Quality

The focus on seedling quality in forest restoration programs goes back at least a century (Table 1).
Since the early 20th century, silviculturists have recognized the importance of planting seedlings with
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desirable attributes, and that successful establishment was associated with these attributes [5]. Early
on, foresters examined plantation failures in an attempt to discern causes of poor performance, because
of the silvicultural investment needed to ensure seedling establishment (e.g., [6–9]). Often, poor
performance was attributed to environmental stress, animal grazing, or damage from disease or insects.
However, poor-quality seedlings [8] and the inability of planted seedlings to grow roots [9] were also
suggested as probable causes of plantation failure. Thus, these early researchers began to ask questions
as to how best to grow quality seedlings and what plant attributes influence seedling survival and
growth (i.e., field performance) after planting on reforestation sites. Furthermore, studies initiated on
southern pines in the 1930s [10,11] were groundbreaking, in that they showed that seedling attributes
measured at the end of nursery culture were related to subsequent seedling field performance.

Table 1. A chronological list of references that discuss seedling quality, review seedling quality issues,
or provide conceptual ideas related to seedling survival and/or growth after outplanting.

Author(s)/Date Relevance to the Discipline of Seedling Quality

Toumey (1916) [5] Desirable seedlings are selected for their “vigor and growing power”
Kittredge (1929) [8] Poor-quality planting stock is defined as the reason for plantation failure.

Wakeley (1935) [12] Higher morphological (i.e., shoot and root length, diameter) grades of seedlings showed
“consistent superiority” over lower grades of seedlings.

Rudolf (1939) [9] The inability of planted seedlings to grow roots is defined as the reason for plantation failure.

Wakeley (1948) [10]
“Grades applied to nursery stock can be useful only so far as they distinguish seedlings with a
high capacity for survival and growth after planting from those with a low capacity” (i.e.,
physiological grade).

Wakeley (1954) [11] Recognized importance of physiological quality for survival and growth. Seedlings within a
defined height range and increasing stem diameter grew best.

Stone (1955) [13] “If the root system did not increase in size at a fairly rapid rate . . . the seedlings would die of
drought . . . ”

Stone and Schubert (1959) [14];
Stone et al. (1962) [15]

Determined that periodicity of root regeneration potential was the basis for defining lifting and
cold-storage schedules that avoided early plantation failures.

Rowe (1964) [16] Proposed that preconditioning might be useful for acclimatizing seedlings to improve their field
performance.

Lavender and Cleary (1974) [17] “ . . . seedlings must be produced in such a way as to be physiologically ready to outplant into
the field environment”

Tinus (1974) [18] Seedlings must be in the “proper physiological state” to survive in the field environment.

Lavender (1976) [19] Recognized importance of seedling physiology for field performance; initial stages of
articulating seedling quality.

van den Driessche (1976) [20] Stated “physiological factors likely to influence survival and growth,” but questioned whether
they can be incorporated into “a grading system”

Cleary et al. (1978) [21] Seedlings with appropriate morphological characteristics that are properly conditioned and
vigorous positively “influence(s) reforestation success”

Sutton (1979) [22] Morphological attributes related to seedling performance, but variability in field performance
leads to conclusion it is “ . . . not what a tree looks like but how it performs in the field”

Sutton (1980a) [23] “The quality of planting stock is the degree to which that stock realises the objectives of
management at minimum cost. Quality is fitness for purpose.”

Sutton (1980b) [24] “In stressful outplanting situations . . . morphology is an inadequate or misleading indicator
of performance.”

Timmis (1980) [25] Physiological variables define seedling performance; seedling response to site conditions
drives growth.

Chavasse (1980) [26] Seedling appearance is not a good measure of field performance. All steps in regeneration
silviculture affect field performance.

Schmidt-Vogt (1981) [27] Stress tolerance of seedlings “holds a key position” in the establishment of forests.
Burdett (1983) [4] First comprehensive list of seedling characteristics that “enhance early plantation performance”

Iverson (1984) [28] The biological goal is to plant seedlings that have the desired genetic, morphological, and
physiological characteristics to utilize site resources most fully.

Ritchie (1984) [29] Morphological characteristics exert primary influence on performance when seedlings are
physiologically sound.

Duryea (1985a) [30] The first seedling quality compendium detailing application of many seedling attributes still
commonly used in assessment programs.

Duryea (1985b) [31] “Having a wide array of tests to choose from may soon enable us to predict a seedling’s
suitability to a particular planting site . . . ”

Kramer and Rose (1986) [32] Physiological processes are the “machinery” through which genetics and nursery culture
determine seedling quality.

Glerum (1988) [33] Attributes define a seedling’s “performance potential”, but sound silvicultural practices are
required for “optimal field performance”
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Table 1. Cont.

Author(s)/Date Relevance to the Discipline of Seedling Quality

Lavender (1988) [34] “At present there is no really effective method to measure seedling vigour.”

Puttonen (1989) [35] Morphological traits describe “overall suitability” and physiological traits predict
“acclimatization” to the site.

Hawkins and Binder (1990) [36] “...no one test will be able to predict stock quality...,” rather an integration of tests is required to
define “seedling fitness” for field performance.

Rose et al. (1990) [37] The “target seedling concept” was developed to define specific morphological and physiological
seedling attributes “that can be quantitatively linked to reforestation success”

Johnson and Cline (1991) [38] No single test is best and a “battery of tests is required to consistently predict seedling quality”
Langerud (1991) [39] The term “viability” is the best descriptor for tests assessing seedling quality.

Omi (1993) [40] No single attribute can “solely predict outplanting success”. However, a “wide array of seedling
tests may be impractical”

Grossnickle and Folk (1993) [41] A combination of tests simulating field conditions are required to forecast, not predict, growth.

Folk and Grossnickle (1997) [42] The distinction between seedling quality testing for initial survival or growth potential is
required for better decision making in forest restoration programs.

Mattsson (1997) [43] Single morphological attributes cannot forecast performance. A combination of morphological
and physiological attributes can possibly “predict field performance”

Mohammed (1997) [44] Measurement of attributes is critical for defining viable seedlings that can survive in the field,
although it is difficult to reliably forecast growth.

Puttonen (1997) [45] Morphological attributes can be used to “predict field performance”

Grossnickle (2000) [2] Attributes supply useful performance information, although there are forecasting limitations
depending on timing of tests and field site conditions.

Colombo (2004) [46]; Wilson and
Jacobs (2006) [47]

First reviews to focus on hardwoods; their unique characteristics mean alternative
morphological attributes or timing of physiological measurements should be considered.

Haase (2008) [48]
Many morphological and physiological variables can be measured to track and assess seedling
quality. Defined a list of most commonly used morphological and physiological measurements
of forest seedlings.

Ritchie et al. (2010) [49] Morphological attributes “seldom change” after lifting, thus they project to the field, whereas
physiological attributes “provide only a momentary analysis of plant quality”

Villar-Salvador et al. (2010) [50]
Review focused on the uniqueness of Mediterranean woody species and that, although
somewhat similar, seedling quality practices need modification for species of this
geographic region.

Landis (2011) [51]
The “target seedling concept” expanded to the “target plant concept” thereby including all types
of plant materials (e.g., trees, shrubs, grasses) and including seeds, cuttings, or wildlings, as well
as traditional nursery stock.

Dumroese et al. (2016) [52] Application of the “target plant concept” to the nursery manager-client partnership with the
goal of meeting forest restoration objectives.

In the mid-20th century, researchers began to critically examine what it took to grow quality
seedlings in nurseries and what plant attributes conferred improved field performance (Table 1).
These programs initially focused on bareroot seedlings [10,11,13]. Many of these measurements were
related to morphological attributes [11] or root growth [13]. However, physiological attributes [10] and
periodicity of root growth [14,15] were recognized as important factors affecting field performance.

In the 1970s, the emergence of container nurseries with their inherent ability to have greater
control of cultural practices [53] created a realization that seedling physiology could be manipulated to
change seedling quality (e.g., [17,18,54]). This realization began with the idea, proposed by Rowe [16],
that cultural practices could be applied to acclimatize seedlings and improve their field performance.
At this time, selection of species and locally adapted genetic sources also became part of the seedling
quality discussion [18]. Together, these changes gave researchers and practitioners an opportunity to
produce quality container-grown seedlings that resulted in new standards of field performance [55].
This was the start of seedling quality programs based on the need for a better understanding of
seedling performance capabilities in relation to forest restoration sites (Table 1).

In the late 1970s and early 1980s, forest scientists were discussing the morphological and
physiological attributes of seedling quality (Table 1). At this time, Sutton [23] proposed defining
seedling quality as “fitness for purpose”, meaning that seedlings are grown not just for the sake of
producing nursery stock, but rather to achieve some objective(s) of management [24]. Subsequently, it
became the standard definition for seedling quality, and remains so to this day [49,52]. Interestingly,
this definition also mirrors one of the basic tenets of quality-assurance programs in manufacturing, i.e.,
that the product should be “fit for purpose” [56] (see Section 3.1).

Sutton [24] suggested that improvements in seedling quality would only occur when both
morphological and physiological attributes were considered. Jaramillo [57] was one the first to
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provide a brief list of measurement techniques to evaluate seedling quality. Burdett [4] proposed a
more comprehensive list of morphological (e.g., bud, shoot, root) and physiological (e.g., carbohydrate
reserves, dormancy, drought tolerance, freezing tolerance, nutrient status) attributes which, if present
in seedlings within the proper range of values, would “enhance” seedling performance after planting.
These measured attributes quantify a seedling’s growth potential, with field performance dictated
by how site conditions affect this potential [58]. Burdett [4] proposed that phenotypic traits created
during nursery culture were necessary for matching seedlings to site conditions (i.e., that these traits
“preadapted” seedlings). Furthermore, he considered these phenotypic traits to be just as important as
genotypic traits in determining initial field performance [4].

Further refinement of what seedling attributes defined field performance occurred during the
early to mid-1980s (Table 1). Ritchie [29] articulated seedling properties that describe material attributes
(i.e., single measures of seedling parameters) and performance attributes (i.e., integrated measures
of various material attributes to test conditions). Iverson [28] believed that seedling selection needed
to be based on that genetic, morphological, and physiological attributes that would be best suited to
the intended field site. Duryea [31] envisioned that choosing from a wide array of attributes would
allow one “ . . . to predict a seedling’s suitability for a particular planting site . . . ”, thereby ensuring
successful forest establishment. Furthermore, she believed a testing approach defining seedling quality
just before planting would be desirable [31]. Moreover, Navratil et al. [59] voiced the need for an
integrated stock quality program that assessed seedlings through all facets of the forest restoration
process to improve both nursery production and restoration success.

Between 1988 and 1999, various researchers concluded that seedling quality could not be
determined by an individual morphological or physiological attribute in isolation from other attributes
(Table 1). In addition, it was recognized that measured attributes had to define seedling growth
in relation to anticipated site conditions [35,36,60]. At this time, the “target seedling concept” was
proposed, which suggested that “numerous seedling traits must work together to produce the desired
field response” [37] (see Section 3.1). However, Langerud [39] warned that any measured attribute is
a just a point-in-time assessment. Furthermore, a performance potential index was proposed at this
time [61]. The idea was to create a battery of measured attributes that defined seedling performance in
relation to potential field conditions [41]. Simpson and Ritchie [62] felt that the ability of a measured
attribute (i.e., root growth potential) to define field performance was a function of both the seedling’s
level of stress resistance and the field site conditions. It was suggested that if the desire was to come
closer to forecasting seedling field performance, then testing conditions should simulate environmental
conditions at the planting site [42].

The range of seedling quality testing approaches continued to expand through the 1990s [2,43,44],
even though many practitioners desired a single test that could measure seedling quality (Table 1). In a
provocative paper, Puttonen [45] addressed whether there was the single “silver bullet” test that could
be used in seedling quality assessment programs. He suggested that grouping morphological attributes
together showed the best evidence of having “predictive value” in defining field performance, because
they retain their mark on seedling identity for an extended time after the seedlings are field-planted
and start to grow. Thus, such a grouping was the best candidate to be the “silver bullet” test [45].
However, Puttonen [45] concluded that physiological status cannot be ignored. This was in agreement
with what other researchers were stating: that individual quality assessments should not be done in
isolation [34], and that a combination of morphological and physiological attributes are required to
describe seedling quality (e.g., [41,43]).

As the field of seedling quality expanded to hardwoods, it was recognized that, although some
conifer attributes were applicable to hardwoods, these genera had unique attributes when it came
to quality assessment procedures (Table 1). Variation in hardwood phenology and ecology requires
that sampling periods and sampled tissues need to be carefully considered when devising a quality
assessment program [47]. Species-specific variation also creates a need to modify quality-assessment
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approaches [50]. Thus, refinement of conifer procedures was needed to effectively measure the quality
of hardwood seedlings.

In conclusion, from the realization that establishment success was associated with seedling
attributes [5], through recognizing that seedling attributes were related to seedling performance [11],
to defining these measurements as being related to a seedling’s “fitness for purpose” [23], these
perspectives have focused on defining seedling attributes that define their field performance. Moreover,
this view was the main premise of the “target seedling concept” [37]. Use of this concept within an
operational setting [63] was viewed as an effective way to create a nursery–client partnership that
would permit open dialogue leading to a successful restoration outcome [51,64–66]. Finally, the idea
that this concept be expanded to include native plant (i.e., woody and non-woody forest and range
species) material (e.g., seedlings, cuttings) used in restoration programs has been proposed, and is
known as the “target plant concept” [51,52,64,66].

3. Application of Seedling Quality within a Forest Restoration Program

Seedling quality assessment procedures occur in the nursery both during culture (see Section 3.1)
and at lifting (see Section 3.2). The following is a review of the conceptual approach used to assess
seedling quality from these two perspectives.

3.1. Monitoring the Process

In Monitoring the Process, the nursery manager creates a system for monitoring culture practices
and crop development, which allows them to grow seedlings to the desired specifications. The proper
application of nursery practices to produce quality seedlings is a key component of successful
restoration programs using both bareroot [67,68] and container-grown [2,55,69] seedlings. To develop
an effective seedling quality program that monitors the process, one needs to understand how the crop
responds to cultural conditions. A crop’s physiological response to the environment and its subsequent
developmental response ultimately determine its growth performance in the nursery [70]. If nursery
staff understand a species’ physiological capability in relation to environmental conditions, then
these detailed cultural practices can become standard operating procedures (SOPs). Various authors
have suggested that SOPs need to be integrated into crop plans to consistently produce high-quality
seedlings each year, whether they are bareroot [11,67,71] or container grown [55,72].

A conceptual model for monitoring a nursery production system that consistently produces
high-quality seedlings is outlined in Figure 1. As mentioned, to create SOPs, one needs to fully
understand each species’ performance attributes, which entails understanding the ecophysiological
and growth characteristics that define seedling development. Furthermore, SOPs for a given species
can vary significantly with seedlot and/or target morphological and physiological specifications
needed for a given outplanting site. In addition, SOPs for every phase of nursery culture need to
be created because seedling development changes throughout culture. Furthermore, SOPs are the
‘knowledge tools’ nursery practitioners develop and subsequently use to guide them through each
crop production cycle.
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Figure 1. Conceptual model for monitoring seedling quality during crop development in the nursery.

Once the crop plan with SOPs has been developed, a tracking system is needed to ensure cultural
guidelines are being followed and the crop is growing according to the plan (Figure 1). Such a system
involves tracking both the nursery environment and crop performance [73]. Environmental conditions
are tracked to define both optimum and limiting conditions for crop performance. Atmospheric
conditions (e.g., air and plant temperature, relative humidity or vapor pressure deficit, light intensity,
carbon dioxide level) and edaphic parameters (e.g., substrate temperature, substrate water content) can
be monitored continuously with automated environmental sensors. Fertigation parameters (e.g., pH,
electrical conductivity) can be monitored by handheld devices or semipermanent substrate probes.
Automation of environmental monitoring provides rapid data synthesis that allows one to quickly
understand how various parameters are affecting crop performance.
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Crop performance is tracked by selecting morphological and physiological parameters that both
mark important stages in seedling development [39] and can be easily measured. Alternatively,
new technologies (e.g., fluorescence-imaging systems [74]) are becoming available that measure crop
performance at a large scale and provide staff with the ability to understand how cultural practices are
affecting seedling ecophysiological response. Such technology can be integrated with the irrigation
system so that irrigation/fertigation automatically occurs at the first sign of stress. However, one also
needs to “walk the crop” on a regular basis, thereby ensuring that the measured data corresponds with
actual crop development. Furthermore, continued monitoring of the crop for pests is a critical part of
maintaining crop quality during nursery development.

A crop performance database, together with a database for operational and cultural adjustments
to the crop plan, is needed for such a monitoring system. Data collection and entry need to be
efficient, as ongoing data analysis alerts staff when an incident that takes the crop away from the
intended plan has occurred. In addition, one needs to understand seedling development in relation to
planned cultural practices and use assessments to discern if corrective actions are needed to ensure
the development of quality seedlings. Then, remedial action can quickly be taken to return to the
crop plan. Deviations from the crop plan are recorded, so that after crop lifting, a crop review allows
nursery staff to develop an understanding of what worked, what didn’t, and where improvements in
the crop plan can be made (Figure 1). In addition, deviations are compared with crops across a number
of years to gain a perspective on crop performance under a range of conditions. Both retrospections
allow the nursery practitioner to make adjustments to cultural practices, thereby further refining SOPs
to improve future crop performance. In this way, a quality assurance program develops, and becomes
a system of positive change and continued improvement in crop cultural practices.

This approach is part of the “target seedling concept”, in which attention to the crop plan,
as proposed above, is important to achieving the desired seedling product [37,75]. This approach
is also similar to ISO quality assurance programs that monitor the production process to ensure
achievement of planned results [56,76]. Furthermore, Grossnickle [73] described a quality-assurance
program designed and operated at ten nurseries across North America that produced tens of millions
of high-quality somatic loblolly pine (Pinus taeda L.) seedlings, which were planted throughout the
southeastern United States. Creating and running this quality program demonstrated that, when
designed to monitor the process, quality seedlings were the final output [73].

3.2. Monitoring the Product

In Monitoring the Product, an information database is created that allows dialogue between
nursery and client on seedling performance capabilities. When nursery staff and silviculturists
consider using a quality-assurance program to assess their seedlings, two questions are commonly
asked. How to select stock that ensures the best field performance after planting? How to select tests
that are useful in culling seedlings that do not meet desired quality standards? These questions are
addressed in the paragraphs below.

A conceptual model for modeling seedling quality at the end of nursery practice is presented in
Figure 2. This model provides a perspective on how one applies various assessment procedures
when measuring seedling attributes that define field survival and/or field growth potential.
Ritchie [29] discussed seedling quality in terms of material and performance attributes. Material
attributes are single-point measures of individual parameters representing specific plant subsystems
(e.g., morphology, osmotic potential, root electrolyte leakage, nutrient content/concentration,
individual gas exchange measurements). In contrast, performance attributes reflect an integration
of various material attributes, are environmentally sensitive plant properties, and are measured
under specific testing conditions (e.g., root growth potential, freezing tolerance, 14-day gas exchange
integrals). Both attribute types provide information on initial survival and field performance potential.
Nursery staff and silviculturists need to define specific objectives before selecting testing procedures
within a seedling quality program. In this way, they will achieve one of the basic principles of
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the “target seedling concept”, which is for nurseries to deliver seedlings with morphological and
physiological attributes that meet targets set by land managers for their restoration program [37,52]
(see Section 2).

Figure 2. Conceptual model for monitoring seedling quality at the end of nursery culture (adapted
from Folk and Grossnickle [42]).

One can never assume that planting high-quality seedlings “predicts” good field performance,
as success is also influenced by appropriate silvicultural treatments before planting, as well as
site conditions after planting [39,41,77]. After seedlings are planted, they may undergo various
transplanting stresses before they can initiate growth and become “coupled” with the forest
ecosystem [78]). Furthermore, if these environmental stresses are excessive [78], or seedlings have
“too low a viability for the planting site” [39], then mortality [79] or a lack of proper growth [80]
can occur. This is why seedling growth just after planting is critical to seedling survival and
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establishment [81,82]. Furthermore, once seedlings are established, seedling performance depends
on inherent growth potential (which is related to their morphological and physiological attributes),
together with their ecophysiological response to site environmental conditions that limit or enhance
that potential [2]. The degree to which seedlings are suited to site conditions has the greatest influence
on their performance immediately after planting [4,37]. Finally, as part of a comprehensive forest
restoration program, measurement of seedling quality provides the silviculturist with information to
“forecast” future plantation performance.

In planning a seedling quality program, one needs to choose attributes that assess seedling
potential both to survive initially and to grow after field planting. The following paragraphs discuss
attributes that measure initial survival potential and growth potential.

Initial survival potential is a measure of seedling “functional integrity” [41]. Functional integrity
indicates whether seedlings are, or are not, damaged to the point of limiting primary physiological
processes. Indeed, seedlings with reduced functional integrity can have poor field survival [2,79].
That said, seedlings meeting minimum standards typically have the capability of surviving in all but
the most severe field site conditions [60]. Testing for functional integrity can be used at lifting to cull
seedlings that do not meet minimum physiological performance standards, and includes assessment
techniques such as root growth potential, root electrolyte leakage, and chlorophyll fluorescence.
Root growth potential [13,62,83–87] and root electrolyte leakage [88,89] indicate root system integrity.
Shoot system integrity is indicated directly by chlorophyll fluorescence [90–92] and indirectly by root
growth potential [29]. Morphological attributes such as shoot height, stem diameter, root mass, and
shoot-to-root ratio, together with physiological attributes such as drought resistance, mineral nutrient
status, freezing tolerance, and root growth, have been shown, in some instances, to forecast survival
after planting (reviewed by [2,79]). However, there is no guarantee that testing for initial survival
potential provides information on field growth under limiting environmental conditions.

Plant attributes forecasting field growth need to define the intrinsic growth potential of seedlings
with regard to site conditions [60]. A number of plant attributes measured at lifting (e.g., height,
diameter, shoot-to-root ratio, root growth potential, nutrient status, drought resistance, freezing
tolerance) have been reviewed for their capability to forecast growth [80]. When considering
a more detailed assessment of seedling performance potential, it is important to select plant
attributes that characterize performance in relation to the anticipated field site environmental
conditions [31,35,36,41,42,60] (Figure 2). However, field conditions can only be roughly simulated.
Furthermore, these are single-point assessments within a seasonal performance pattern [41] that
changes as seedlings go through their phenological cycle [70]. Therefore, this approach forecasts, but
is not able to predict, field performance. With these caveats in mind, multiple plant attributes have
been combined that characterize seedling performance relative to stress events typically encountered
on restoration sites (e.g., performance potential index [61], covariate morphological attributes [93],
multivariate analysis [94], multiple variable models [95]) and provide forecasting models.

4. Plant Attributes that Define Seedling Quality

Plant attributes have been assessed at the morphological and physiological levels (Tables 2 and 3).
However, in reality, only a limited number of these attributes are used within operational programs [44],
because an “ideal operational measure” needs to be rapid, simple, cheap, reliable, nondestructive,
quantitative, and diagnostic [96]. Indeed, researchers have agreed that only a subset of the most easily
measured attributes listed in Tables 2 and 3 [48–50,97] be considered for seedling quality programs in
nurseries [2,4,36,41,43–45]. However, each researcher has his/her preferred attributes. Furthermore,
the “ideal operational measure” filter has also limited the operational use of comprehensive tests that
combine multiple morphological and physiological attributes [36,43,45,97].
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Table 2. Morphological attributes commonly used in seedling quality assessment programs to monitor
either the process during nursery culture or the product at the end of culture.

Attribute Application
Monitor

the Process
Monitor

the Product
References 1

Bud development Growth × [98–100]
Dry weight fraction Lift/store × [101–103]

Height and diameter Crop development × [11,21,37,55,75,104]
Height and diameter Survival, growth × [4,5,11,21,22,26,27,29,104,105]
Morphological ratios Survival, growth × [4,5,11,25,29,35,98]

Root system Crop development × [11,21,37,75,104,106]
Root system Survival, growth × [4,5,11,19,27,32,33,35,98]

Shoot and root weight Survival, growth × [11,98]
Shoot system dimensions Growth × [2,107]
Qualitative shoot trait 2 Survival, growth × [5,11,48–50,98]
Qualitative root trait 3 Survival, growth × [5,11,48–50,97,98]

1 References are either the initial research conducted on an attribute and/or citations that initially recognized the
attribute for inclusion in seedling quality programs at nurseries; 2 Examples: lack of terminal bud, multiple stems,
stem curvature; 3 Examples: deformed root, poor plug development.

Table 3. Physiological attributes commonly used in seedling quality assessment programs to monitor
either the process during nursery culture or the product at the end of culture.

Attribute Application
Monitor

the Process
Monitor

the Product
References 1

Chlorophyll fluorescence Lift/store, viability × [90–92,108,109]
Chlorophyll fluorescence Survival, growth × [48,49,110]

Freezing tolerance Lift/store × [25,29,33,35,111,112]
Freezing tolerance Survival, growth × [29,33,35]

Nutrient status Crop development × [11,17,21,55,67,71,113–115]
Nutrient status Survival, growth × [4,11,18,35,116–119]

Pest status Crop development × [38,55,120–122]
Pest status Survival, growth × [11,97]

Plant water status Crop development × [21,115,123]
Plant water status Survival, growth × [38,124–126]

Root electrolyte leakage Crop development × [49,127]
Root electrolyte leakage Survival, growth × [49,88,89,126]
Root growth potential Survival, growth × [4,13,21,29,33,35,83–87]

1 References are either the initial research conducted on an attribute and/or citations that initially recognized the
attribute for inclusion in seedling quality programs at nurseries.

Despite these challenges, assessment programs for nurseries have been developed by selecting a
set of attributes whose intended purpose is to ensure quality control, enhance consumer confidence,
avoid planting damaged stock, and improve nursery cultural practices [50,97,128–130]. In addition,
there have been a number of published discussions describing measurement procedures for the most
common attributes (e.g., [48,49,97]). As mentioned, the field of seedling quality has evolved to the
point that nursery practitioners and silviculturists now have a range of plant attributes that they can
measure to understand the quality of their seedlings. The following discussion briefly examines the
application of commonly used morphological (Table 2) and physiological (Table 3) attributes in forest
restoration programs.

4.1. Commonly Used Plant Attributes

Morphological and physiological attributes are used to measure crop development in the nursery
(See Section 3.1). Commonly measured morphological attributes include height, diameter, and root
development for bareroot (e.g., [11,104]) and container-grown (e.g., [55,75]) seedlings. Typically,
height and diameter are compared with standardized growth curves defined for each species, seedlot,
and stocktype, which allows the adjustment of the nursery environment and cultural practices in order
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to keep seedlings on the crop plan. Root development is also monitored in container-grown seedlings to
determine plug integrity, which is critical at lifting [131]. Physiological attributes commonly measured
during crop development include nutrient status and plant water status. These attributes provide
information for tracking crop performance, thereby supporting cultural adjustments to the crop plan.
However, root electrolyte leakage is measured during crop development if there is a concern about
damage. Furthermore, measuring chlorophyll fluorescence, electrolyte leakage, or whole-plant freezing
during crop development in the autumn provides an assessment of freezing tolerance, with the goal of
determining the proper lift/store date to develop sufficient stress resistance so high quality seedlings
are stored (reviewed by [109,132,133]). Finally, at lifting, various morphological attributes, together
with the physiological attributes of plant water relations, freezing tolerance, mineral nutrient status,
root growth potential, and root electrolyte leakage are commonly assessed (See Section 3.2).

Morphological attributes are also used to relate seedling quality at lifting to subsequent field
performance (See Section 3.2). Commonly measured morphological attributes include height, stem
diameter, root systems, and shoot-to-root ratios [134]. These attributes are easy to measure in
operational settings, ensuring their use in small-scale nurseries in developing countries [135] and large,
commercial nurseries in first-world countries [2,136,137]. Morphological attributes influence seedling
survival and growth after planting on forest restoration sites, because they retain their mark on seedling
attributes for extended timeframes (reviewed by [79,80]). Greater stem diameter and root system size
confer a higher chance of survival and growth, because they limit susceptibility to planting stress by
improving water uptake and transport to foliage. Interestingly, South [138] revisited the morphological
criteria defined by Wakeley [11] and found that root collar diameter was still the attribute that best
forecast field growth potential. Greater height provides a competitive advantage (i.e., access to light)
on sites with competing vegetation. However, where potential site environmental conditions are
limiting (e.g., dry soils, high evaporative demand), seedlings with smaller shoot systems or lower
shoot-to-root ratios are better adapted. Finally, morphological attributes are only measures that help
define overall seedling size, growth potential, and balance [98,105], whereas seedling physiological
attributes also have a major influence on field performance.

Other morphological attributes have been used in seedling quality programs, but with limited
acceptance (Table 2). Bud development has been used in Ontario, Canada as a measure of potential
seedling shoot growth [97]. Dry weight fraction has been used in Scandinavia to assess the development
of stress resistance in the fall (c.f. [102]). Shoot dimensions (i.e., phyllotaxy of needles on shoots and
arrangement of shoots along the leading stem) can be an important measure of seedling development
for some (e.g., spruce [139]) but not all species.

Physiological attributes are also used to relate seedling quality at lifting to field performance
after planting (See Section 3.2). Drought resistance, mineral nutrient status, root growth potential,
root electrolyte leakage, and freezing tolerance have been used to assess seedling quality in relation
to field survival (reviewed by [79]) and growth (reviewed by [80]) after planting. Improved survival
is to the result of greater drought resistance and improved seedling nutrition at planting, which
increases the speed with which seedlings can overcome planting stress, become established, and grow
on the forest restoration site. Shoot water potential and root electrolyte leakage provide critical
information on whether seedlings are damaged to the point of limiting physiological function; planting
undamaged seedlings improves their survival and growth. Additional measurement of seedling
functional integrity (e.g., root growth potential) is recommended if earlier tests detect a level of damage
that could potentially limit field performance. Root growth potential on its own is valuable in many
instances in forecasting field performance, because improved survival and growth due to greater
root growth immediately after planting (reviewed by [79,80]) confers improved seedling survival and
subsequent establishment within the first few months after planting.

In conclusion, it is important to emphasize that no single attribute can assess all seedling
quality issues [43,45]. Morphological attributes cannot be used in isolation to assess seedling quality
because morphology does not describe physiological vigor [105,134]). Furthermore, seedling quality
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cannot be determined by individual physiological attributes in isolation from other physiological and
morphological attributes [34]. Thus, a seedling quality program needs to combine morphological and
physiological attributes to provide the information necessary for making both sound nursery cultural
decisions and restoration site decisions. Furthermore, a combination of desirable morphological and
physiological attributes forecasts greater chances of survival and increased growth after establishment.

4.2. Novel Attributes and Tests for Plant Attributes

As the field of seedling quality assessment has developed, “novel” attributes and measurement
techniques have been examined for their usefulness. The following paragraphs briefly outline novel
physiological attributes or novel measurement techniques for traditional physiological attributes
(Table 4), and novel biochemical, biophysical, and molecular techniques (Table 5).

Table 4. Novel physiological attributes or novel measurement techniques for traditional physiological
attributes, proposed for use in seedling quality-assessment programs to monitor either the process
during nursery culture or the product at the end of culture, which were not adopted.

Attribute or Technique Application
Monitor

the Process
Monitor

the Product
References 1

Auto-fluorescence Viability × [44,140]
Bud dormancy Lift/store, viability × [29,112,141,142]

Carbohydrate status Survival, growth × [143–146]
Chlorophyll content, foliage color Crop development × [147]
Chlorophyll content, foliage color Growth × [24,49,98]

Crop-level chlorophyll fluorescence Crop development × [74]
Drought avoidance Survival, growth × [148]
Drought tolerance Survival, growth × [4,11,19,25,27,29]

Electrical impedance Lift/store, viability × [111,149,150]
Gas exchange 2 Survival, growth × [107,151,152]
Heat tolerance Survival × [153]

Infrared thermography Lift/store, viability × [154–156]
Mycorrhizal status Growth × [157–161]

Nuclear magnetic resonance Survival × [162]
OSU 3 vigor test Survival × [34,125,163]

Performance under stress Growth × [42,61]
Root hydraulic conductivity Survival, growth × [164–166]

Stress-induced volatile emissions Survival × [167–170]
Xylem cavitation Survival × [171–173]

1 References are the initial work conducted on an attribute or a measurement technique; 2 Examples: needle
conductance, photosynthesis, transpiration; 3 Oregon State University.

Table 5. Novel measurement techniques at the biochemical, biophysical, and molecular levels, proposed
for use in seedling quality-assessment programs to monitor either the process during nursery culture
or the product at the end of culture, which were not adopted or were recently reported in the literature.

Technique Application
Monitor

the Process
Monitor

the Product
References 1

Biochemical
Enzymatic activity Survival × [35,174]
Fluorescein diacetate staining Viability × [175,176]
Triphenyl tetrazolium chloride staining Survival × [36,177]
Vegetative storage proteins Lift/store, viability × [103]

Biophysical
Extracellular electropotential Viability × [178–180]
Root electrical impedance Lift/store × [181]

Molecular
Gene expression Lift/store × [182–186]
Molecular markers Survival, growth × [187]

1 References are the initial research conducted on a measurement technique in the context of seedling quality.
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Some physiological attributes and measurement techniques were categorized as “novel” (Table 4),
because other than in the articles describing them or in subsequent review articles, there is scant
information that nursery practitioners are operationally using them. Indeed, when these attributes and
techniques were compared against the criteria for “ideal operational measures” of seedling quality [96],
many failed for one reason or another. Some fail the criterion of being rapid (e.g., bud dormancy, OSU
vigor test). Others fail the criteria of simple and cheap because they require technically trained staff
to run relatively expensive instruments for the analysis (e.g., drought tolerance, chlorophyll content,
electrical impedance, infrared thermography, gas exchange, crop-level chlorophyll fluorescence,
nuclear magnetic resonance, root hydraulic conductivity, stress-induced volatile emissions, xylem
cavitation). Furthermore, whether the information is a reliable assessment of seedling quality
(e.g., drought avoidance, foliage color, mycorrhizal status) plays a role in whether a nursery would
spend the time to conduct the test.

Most of the biochemical, biophysical, and molecular techniques (Table 5), which were developed
during the late 1980s and early 1990s have yet to be applied in nurseries. In general, molecular testing
has not fulfilled the expectation voiced over 20 years ago that they would offer rapid measures of
seedling quality [45]. However, more recent gene-expression analysis on freezing tolerance [188]
has the potential to replace other tests (e.g., whole-plant freezing, electrolyte leakage, chlorophyll
fluorescence [109,111]) used to make lift/store decisions. Genes involved in freezing tolerance in
Scot’s pine [188], Norway spruce [188], and Douglas-fir [183] have been identified, and then correlated
with results from shoot electrolyte leakage tests to develop an assay that measures gene activity
during freezing tolerance acquisition [188]. Furthermore, a related spin-off company (nsure®) has
commercialized the assay. Clients sample, stabilize, and ship shoot tips to the lab, which conducts the
test; level of freezing tolerance is e-mailed to clients within 2 days of sample arrival at the lab. It is yet
to be determined whether this assay will replace the traditional measures of freezing tolerance used
by nurseries.

5. Summary

Seedling quality is an important component of any successful forest restoration program. Over the
past century, the concept of what is meant by seedling quality has evolved to the point that these
plant attributes are used to improve seedling nursery culture and to forecast seedling survival and
growth after outplanting. Such seedling quality information can now be used within the “target
forest or plant seedling” concept to enable nursery practitioners and foresters to have an effective
dialogue on how seedlings with certain attributes will meet forest restoration objectives. Even though
planting seedlings with desirable plant attributes does not guarantee high survival and good growth
after planting, planting seedlings with desirable attributes increases chances for a successful forest
restoration program.
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