
Article

Establishing Pine Monocultures and Mixed
Pine-Hardwood Stands on Reclaimed Surface Mined
Land in Eastern Kentucky: Implications for Forest
Resilience in a Changing Climate

Geoffrey Bell 1, Kenton L. Sena 2,*, Christopher D. Barton 2 and Michael French 3

1 Department of Environment and Ecology, University of North Carolina, 3305 Venable Hall
Campus Box 3275, Chapel Hill, NC 27599, USA; gwbell@email.unc.edu

2 Department of Forestry, University of Kentucky, 218 T. P. Cooper Bldg, Lexington, KY 40546, USA;
barton@uky.edu

3 Green Forests Work, 6071 N. SR 9, Hope, IN 47246, USA; michael.french@greenforestswork.org
* Correspondence: kenton.sena@uky.edu

Received: 13 September 2017; Accepted: 29 September 2017; Published: 3 October 2017

Abstract: Surface mining and mine reclamation practices have caused significant forest loss and forest
fragmentation in Appalachia. Shortleaf pine (Pinus echinata) is threatened by a variety of stresses,
including diseases, pests, poor management, altered fire regimes, and climate change, and the species
is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf
pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not
been critically evaluated. This paper presents first-year survival and growth of native shortleaf
pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda), which
has been highly successful in previous mined land reclamation plantings. Pine monoculture plots
are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree
growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%), but height
growth is similar to that of loblolly pine. No differences in survival or growth were observed
between monoculture and polyculture treatments. Additional surveys in coming years will address
longer-term growth and survival patterns of these species, as well as changes to relevant soil health
endpoints, such as soil carbon.

Keywords: reforestation; shortleaf pine; restoration ecology; mine reclamation; Appalachia; loblolly pine

1. Introduction:

1.1. Surface Mine Reclamation and Reforestation

Surface mining is a major driver of land use change throughout Appalachia, including
eastern Kentucky. While early surface mining reclamation practices often resulted in successful
post-mining forest restoration, surface mines reclaimed prior to 1978 were often characterized
by haphazardly-placed mine spoils that were prone to landslides and erosion, and significantly
impaired water quality. Public Law 95-87, The Surface Mining Control and Reclamation Act of 1977
(SMCRA), ushered in a new era of surface mine reclamation, requiring a return of landforms to the
approximate original contour, stabilized spoil placement to eliminate landslides, and establishment of
herbaceous vegetation to control erosion. Revegetation was commonly performed by hydro-seeding
competitive, fast-growing nonnative species such as tall fescue (Schedonorus arundinaceus) and
lespedeza (Lespedeza cuneata). Surface mines reclaimed after SMCRA were often characterized by
heavily compacted spoils with poor infiltration and aeration [1]. Aggressive groundcovers competed
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with planted and volunteer tree seedlings for nutrients, water, and light, and the compacted soils were
often not conducive to vigorous tree growth. As a result, many mining companies began implementing
hay/pastureland or wildlife habitat as post-mining land uses. These reclamation practices present
challenges to subsequent reforestation of reclaimed mine sites.

An estimated 600,000 ha of previously forested Appalachian land was surface mined and
reclaimed to non-forest land (termed “legacy mined land”) [2], perpetuating negative landscape
effects of surface mining, including forest fragmentation and spread of invasive species, as well as
habitat and biodiversity loss [3]. In addition to these ecological challenges, this extensive land area is
mostly unmanaged and economically unproductive. Thus, this broad area of unforested land presents
opportunities for ecological improvement, including restoration of threatened and endangered forest
species, habitat restoration, and carbon storage, as well as short-term (e.g., restoration industry jobs)
and long-term economic opportunities (e.g., timber and non-timber forest products) [4].

A team of researchers, regulators, and industry practitioners have addressed the reforestation
challenges on reclaimed mine sites by developing a set of recommendations known as the Forestry
Reclamation Approach (FRA) [4,5]. When these guidelines are followed during initial mine reclamation,
forest establishment can be successful, with high survival and hardwood growth rates similar to
regenerating stands of high-quality forests [6–8]. Additionally, reclaimed surface mined lands that
currently exist as grasslands or shrublands (legacy mines) can be rehabilitated using the FRA by
controlling competing vegetation, mitigating soil compaction, and planting a diverse mix of native
tree and shrub seedlings [9–11].

The FRA recommends planting both early- and late-successional species [5], however, the survival
and growth of planted hardwoods on legacy mined land can be restricted by severe competition
from grasses and shrubs, especially tall fescue, lespedeza, and autumn olive (Elaeagnus umbellata) [12].
In contrast, pines typically demonstrate high survival and growth rates on legacy sites [13], rapidly
achieving canopy closure and shading out competitive invasive species in the understory. The potential
for pines to act as a “nurse” crop on harsh legacy sites should also be evaluated. For example, pines
could be planted in monoculture stands to improve soil quality through organic matter contribution
and to eliminate invasive species from the understory, and subsequently underplanted with hardwoods,
which could be released in stages. Alternatively, pines and hardwoods can be planted together initially,
and pines can be selectively thinned as needed.

1.2. Shortleaf Pine Restoration

Shortleaf pine (Pinus echinata), an economically and ecologically valuable species native
throughout the southeast US, is a potential candidate for mine reforestation. Shortleaf pine forest types
have experienced significant declines throughout the southeast US due in part to insect and disease
pressure, extensive timber harvesting, fire suppression and poor management [14–19]. Shortleaf pine
is currently the focus of a major restoration effort (Shortleaf Pine Initiative: http://shortleafpine.net/)
throughout its native range [20,21] because of the suite of ecosystem services they provide. Shortleaf
pine restoration leads to increased levels of plant available nutrients over time [22], in spite of initial
loss of nitrogen [23]. Shortleaf pine restoration also provides important habitat for the federally
endangered red-cockaded woodpecker (Picoides borealis), and also positively impacts diversity and/or
abundance of populations of taxa including butterflies, reptiles, amphibians [24], other birds [25,26]
and small mammals [27]. Shortleaf pine stands, characterized by relatively frequent fire maintaining
low basal area, also provide important habitat for endangered Indiana bats (Myotis sodalis) [28], as well
as a number of other bat species [29].

Loblolly pine (Pinus taeda) is another economically valuable tree species that is distributed across
the southeast US, although not native to Kentucky, generally preferring poorly drained, fine-textured
soils. In mixed stands, loblolly pine is commonly associated with hardwoods (including white oak)
and other pines (including shortleaf pine). Loblolly pine is shallow-rooted; the majority of lateral roots
are found in the top 15–46 cm of soil, especially in shallow soils with a hardpan or high water table [30].
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Shortleaf pine has a broader distribution throughout the southeast US, ranging much farther north
than loblolly pine, and it tolerates a broader range of climate conditions. While shortleaf pine grows
best on deep, well-drained floodplain soils, it is also competitive on dry, shallow ridgetop soils, and is
commonly associated with a number of hardwood and other pine species. When found in mixed
stands with loblolly pine, shortleaf pine tends to be dominant in drier ridgetop sites; this is commonly
attributed to shortleaf pine preferring better soil aeration and being more tolerant of poor soil fertility
than loblolly pine [30].

While techniques for establishing shortleaf pine in relatively high-quality sites, such as existing
hardwood forests or agricultural fields [31–34], are relatively well-understood, establishment
of shortleaf pine on compaction-mitigated legacy surface mines has not yet been rigorously
evaluated [35,36]. Shortleaf pine is competitive on drier ridgetop sites with frequent fire [37], but legacy
mine sites can be characterized by poor infiltration resulting in ponding, which may limit site suitability
for shortleaf pine. In contrast, loblolly pine prefers poorly drained soils and is more tolerant of
higher moisture conditions [37], and has demonstrated good growth and survival on legacy sites in
Kentucky [13].

Over even larger spatial scales and longer temporal scales, climate change represents a major
threat to forest tree species, especially for species already stressed by insects, disease, and management
issues [38,39]. Because trees are sessile and have long generation times, they may be particularly
susceptible to the effects of rapid climate change, less resilient to changing temperatures and moisture
than animals or plants with shorter generation times [40]. An option for conservation and management
of forest trees with respect to climate change may be assisted migration, intentionally planting species
of interest in their projected future range under climate change. Shortleaf pine is an example of a
species already under significant pressure, which may be particularly threatened by climate change.
With climate change projections indicating that the distribution of loblolly pine will shift north over
time into Kentucky [14], the species is likely to move into these sites whether planted or not, and may
potentially outcompete native species such as shortleaf pine. Focusing shortleaf pine reforestation
efforts in the northern part of its range, such as eastern Kentucky, may improve its resilience to
climate change.

This project was initiated to evaluate growth and survival of shortleaf pine and loblolly pine
on surface mined land in eastern Kentucky grown in monoculture and in polyculture with white
oak (Quercus alba), northern red oak (Quercus rubra), and chestnut oak (Quercus montana). This paper
presents first-year growth and survival data. Long-term project goals will be assessed by follow-up
surveys 5–7 years after establishment, including species effects (i.e., shortleaf pine vs. loblolly pine) and
planting effects (i.e., polyculture vs. monoculture) on reforestation success, including tree (e.g., growth
and survival) and soil (e.g., carbon, pH, etc.) outcomes.

2. Methods and Materials

2.1. Plot Establishment and Data Collection

A 1.3 ha plot of legacy mined land in a portion of the University of Kentucky Robinson Forest
(Breathitt County, KY) was selected for this experiment (Figure 1). Exotic shrubs, primarily autumn
olive (Elaeagnus umbellata), were removed prior to ripping using a small bulldozer (John Deere 550G).
Soil compaction was mitigated by cross-ripping (plowing) the ground with a Caterpillar D-9 bulldozer
equipped with two, rear-mounted ripping shanks. The two shanks were spaced approximately 2.4 m
apart on the tool bar so that the two shanks were located directly behind the bulldozer’s tracks. Ripping
shanks were immersed approximately 1 m deep into the soil and pulled through the ground, creating
parallel rips across the entire site. The bulldozer operator then turned perpendicular to the first set of
parallel rips and ripped the site a second time. The experiment was set up as a split-plot design with six
whole plots, each measuring 39 m × 31.7 m. Three of the plots were randomly assigned to a shortleaf
pine treatment and the other three to a loblolly pine treatment. Each whole plot was divided into two
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22 m × 12.2 m subplots that were randomly assigned either the pine monoculture or pine-hardwood
polyculture treatment (i.e., split plot factor) (Figure 2). One-year-old bare root seedlings sourced from
the Kentucky Division of Forestry were planted in March of 2016. Seedlings were planted in rows
on a 2 m spacing, with 45 pines per monoculture subplot, and 22 hardwoods (red oak, white oak,
and chestnut oak) and 23 pines per polyculture subplot. The buffer space outside the border of the
split plots but within the whole plots was planted with seedlings for the pine species assigned to the
whole plot.

Height and ground-line diameter were recorded for each individual at time of planting (spring
2016), and measurements were repeated after one year (spring 2017). In addition, soil samples
(composited from six subsamples) were collected in duplicate at random in each subplot both at
planting and after one year, and samples were analyzed for the following parameters: soil pH, P, K, Ca,
Mg, and Zn. Additional soil analyses conducted only in 2017 included the following: total N, sand, silt,
clay, CEC, total C, and exchangeable K, Ca, Mg, and Na. Sand, silt, and clay were determined by the
micropipette method [41]; pH was determined in a 1:1 soil:water solution [42]. P, K, Ca, and Mg, were
analyzed by Mehlich-III extraction [43]. Cation exchange capacity was determined by the ammonium
acetate method at pH 3 [44]. Exchangeable base concentration was evaluated after ammonium acetate
extraction using ICP [43]. Total N (%) and total C (%) were determined on a LECO CHN-2000 Analyzer
(LECO Corporation, St. Joseph, MI, USA).

Figure 1. Plot location, Breathitt County, KY. (Figure credit: Kylie Schmidt).
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Figure 2. Whole plot (1–6) and subplot configuration of shortleaf pine and loblolly pine monoculture
and pine/hardwood polyculture plantings in rehabilitated legacy mined land in eastern Kentucky.

2.2. Statistical Methods

Statistical analyses were conducted in SAS 9.3. Soils data collected in both 2016 and 2017 were
analysed by repeated measures ANOVA using PROC MIXED, with subplot as the experimental unit.
Planting mix (polyculture vs. monoculture) and species (loblolly pine vs. shortleaf pine), and their
interaction, were modelled as fixed effects, replicate (each treatment replicated 3 times) modelled as a
random effect, and year modelled in the repeated statement. Soils data collected in 2017 only were
analysed by ANOVA using PROC GLM, with planting mix, species, and their interaction modelled as
effects, with three replicates.

Tree height change was averaged by species for each subplot, and subplot means were
treated as the experimental unit. Differences in change in tree height were detected by split-plot
ANOVA using PROC GLM, with species, planting mix, and their interaction, modelled as effects.
Tree survival was analysed using PROC GLIMMIX, with survival proportions calculated for each
subplot as the experimental unit, and species, planting mix, and their interaction modelled as effects.
Significant differences detected by all ANOVAs were followed up by a student’s t-test to detect
pairwise differences.

3. Results

Soil chemical and physical data are reported in Table 1. Of the soil chemical data assessed in both
2016 and 2017, only pH was significantly different, increasing slightly from 5.74 to 6.18 (p < 0.05). K,
Mg, and Zn were significantly higher in loblolly pine than in shortleaf pine, and Zn was significantly
higher in monoculture than polyculture (p < 0.05). Total N and exchangeable Mg were higher in
loblolly pine than shortleaf pine plots (p < 0.05).
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Table 1. Soil data (means ± SE) for soil samples collected from reforestation plots (three plots planted in
loblolly pine and three plots planted in shortleaf pine) in Eastern Kentucky. Each plot was subdivided
into pine-hardwood polyculture and pine-only monoculture subplots. Means with differing letters
are significantly different, as detected by ANOVA and followed up by a student’s t-test, at p < 0.05.
“Exch” = “Exchangeable”.

Year Pine Planting Mix

2016 2017 Shortleaf Pine Loblolly Pine Monoculture Polyculture

Soil pH 5.74b ± 0.31 6.18a ± 0.31 6.20 ± 0.42 5.72 ± 0.42 6.06 ± 0.42 5.86 ± 0.42
P (mg/kg) 6.92 ± 1.27 7.67 ± 1.27 6.79 ± 1.56 7.79 ± 1.56 7.83 ± 1.56 6.75 ± 1.56
K (mg/kg) 91.2 ± 6.24 78.6 ± 6.24 67.9b ± 6.58 101.9a ± 6.58 91.0 ± 6.58 78.8 ± 6.58
Ca (mg/kg) 996 ± 408 1409 ± 408 773 ± 529 1633 ± 529 1178 ± 529 1227 ± 529
Mg (mg/kg) 216.7 ± 16.5 206.1 ± 16.5 159.9b ± 22.4 262.9a ± 22.4 213.7 ± 22.4 209.1 ± 22.4
Zn (mg/kg) 3.09 ± 0.08 3.06 ± 0.08 2.28b ± 0.08 3.87a ± 0.08 3.39a ± 0.08 2.76b ± 0.08
Total N (%) - - 0.104b ± 0.014 0.196a ± 0.016 0.162 ± 0.023 0.138 ± 0.018

Sand (%) - - 62.7 ± 3 53.7 ± 4 58.0 ± 4 58.4 ± 4
Silt (%) - - 25.4 ± 2 32.7 ± 3 29.0 ± 3 29.0 ± 3

Clay (%) - - 12 ± 9 13.6 ± 1.2 12.9 ± 1.2 12.6 ± 0.9
CEC (meq/100 g) - - 7.46 ± 1.13 12.94 ± 1.20 10.84 ± 1.65 9.56 ± 1.13

Exch K (meq/100 g) - - 0.158 ± 0.02 0.308 ± 0.04 0.247 ± 0.04 0.219 ± 0.03
Exch Ca (meq/100 g) - - 3.58 ± 1.68 7.95 ± 2.09 6.63 ± 2.13 4.90 ± 1.85
Exch Mg (meq/100 g) - - 1.13b ± 0.16 2.26a ± 0.21 1.67 ± 0.23 1.72 ± 0.27
Exch Na (meq/100 g) - - 0.023 ± 0.004 0.026 ± 0.004 0.026 ± 0.005 0.023 ± 0.004

Total C (%) - - 0.022 ± 0.004 0.034 ± 0.002 0.029 ± 0.004 0.027 ± 0.003

After one growing season, most seedlings experienced positive growth in their height (77%)
and diameter (72%). Negative height growth was related to deer and elk browse that sheared the
tops off of the seedlings. Diameter growth did not differ between the two pine species, averaging
0.22 cm and ranging between −0.6 cm and 1.79 cm (Figure 3). Hardwood diameter growth was about
half that of the pines with highest growth in white oaks (mean = 0.1 cm; range = −0.6 cm–1.1 cm)
followed by chestnut oak (mean = 0.08 cm; range = −0.25 cm–0.5 cm), and red oak (mean = 0.06 cm;
range = −0.8 cm–0.65 cm) (Figure 4). A similar species-specific pattern was observed in height growth.
Individual loblolly pine seedling growth ranged from −11 cm to 69.3 cm and loblollies had the
largest average height increase (16.02 cm), which was significantly greater than all the hardwoods but
not shortleaf pine. Shortleaf pine height growth ranged from −19.8 cm to 72.5 cm with an average
(10.51 cm) that was approximately 5.5 cm less than loblolly pine. Shortleaf pine height growth was
not significantly different from loblolly pine growth but was significantly larger than two of the three
hardwoods. White oak seedling height growth ranged from −32.2 cm to 52.5 cm. White oaks had
the largest height growth among the hardwoods and was the only hardwood species to achieve a
positive average height growth (5.65 cm). Although many red oak seedlings experienced positive
height growth, ranging from −27.9 cm to 19 cm, their average was negative (−0.71 cm). Similarly,
chestnut oak height growth ranged from −15.5 cm to 7.5 cm and averaged −1.19 cm. Despite the
range of height growths among the hardwoods, none were significantly different from each other.
Collectively, these results suggest that diameter growth was similar among all five species but that the
pines grew taller than hardwoods, with the exception of no significant difference between shortleaf
pines and white oaks.
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Figure 3. First-year growth and percent survival of shortleaf pine and loblolly pine planted in pine
monoculture and pine-hardwood polyculture on rehabilitated legacy mine land in eastern Kentucky.

Figure 4. First-year growth and percent survival of white oak, chestnut oak, and northern red oak
planted in pine-hardwood polyculture on rehabilitated mine land in eastern Kentucky.

4. Discussion

Planting mix (polyculture vs. monoculture) did not significantly influence tree growth or survival;
however, growth and survival varied with species. Shortleaf pine survival (42%) was similar to that
of planted hardwoods, but lower than that of loblolly pine (85%) (p < 0.05). Survival of shortleaf
pine was lower than first-year survival reported by Angel (2008) of mixed hardwoods planted into
mixed mine spoils with no vegetative competition in eastern Kentucky (69–98%) [6,45], lower than
survival (65–75%) of seedlings planted into spoils seeded with groundcover species [46], and lower
than first-year chestnut survival in legacy mined land in eastern Kentucky (72–97%) [9]. However,
shortleaf pine survival was similar to survival of seedlings planted into mine spoil seeded with
groundcover species (56%) [47], and greater than survival of shagbark hickory (Carya ovata) reported
in the same study (24%) [47]. In contrast to relatively low shortleaf pine survival, loblolly pine
survival (85%) was greater than first-year loblolly pine survival reported in Oklahoma by Dipesh et al.
(2015) (76%) [48] and fourth-year survival of another loblolly pine planting near Robinson Forest
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(77%) [13]. While first-year survival of shortleaf pine was relatively low, this planting could still
be successful if ongoing mortality rates are low; subsequent surveys will be necessary to evaluate
long-term suitability of shortleaf pine on these sites. Also, consistent with previous studies at Robinson
Forest and elsewhere, first-year loblolly pine survival was high, supporting continued use of loblolly
pine in mine reforestation efforts.

While first-year survival was lower, first-year growth of shortleaf pine (10 cm) was similar to
that of loblolly pine (16 cm). Growth of loblolly pine dramatically outpaced growth of northern red
oak in an adjacent site in legacy mined land in eastern Kentucky [49]. In that study, loblolly pine
rapidly overgrew competing vegetation and shaded it out (in 4–8 yrs), leading to a bare understory
characterized by a thick pine needle litter layer [13]. In contrast, the northern red oaks in Hansen
et al. (2015) struggled against competing vegetation and were not successful in achieving canopy
closure even after 10 years [13]. While loblolly pine has demonstrated its ability to rapidly outcompete
nonnative vegetation in these conditions, this has yet to be seen with shortleaf pine. Further monitoring
of our plots over the next several years should demonstrate whether shortleaf pine can compensate for
its lower survival and be a reasonable candidate for reforestation on reclaimed surface mined land.
Heavy competition from Miscanthus spp. and other herbaceous species (lespedeza and fescue) in these
plots will likely be the most significant impediment to shortleaf pine survival and growth. Hardwood
growth in this study was low, even negative in two species (chestnut oak and red oak), likely due
to browse by deer and elk. Browse was observed on this site, as on many other similar plantings,
and can significantly affect growth and survival [9,50,51]. Regardless of browse, hardwood growth
tends to be low during the first 2–3 years after planting [45], with growth rates increasing after this
2–3 yr establishment period [6].

Higher survival of loblolly pine than shortleaf pine on our site is likely due to loblolly pine being
favored by site soil moisture and chemistry conditions. Loblolly pine is more tolerant of poorly drained
soils than shortleaf pine [37]. Large portions of the project site exhibited poor drainage and even
standing water (which can frequently be the case on these sites [52,53]), suggesting that overall soil
moisture conditions may be more favorable for loblolly pine than shortleaf pine. Chemically, soils
were favorable across treatments, with pH, particle size distribution, nutrient levels, and CEC similar
to those observed on soils favorable for tree growth and survival in another eastern Kentucky study [6].
However, the soils in loblolly pine plots in this study were chemically more favorable than the soils in
shortleaf pine plots, with higher total N and exchangeable Mg.

The current study continues to provide support for the use of loblolly pine in surface mine
restoration plantings; however, low first-year survival of shortleaf pine is concerning. Additional
studies investigating survival and growth over time will provide additional valuable information
about the potential for surface mines as shortleaf pine restoration sites. Also, the unique design of
this project presents opportunity for investigation of more complex restoration ecology questions,
specifically (1) whether pines planted in mixtures with hardwoods experience greater growth and
survival than pines planted in monoculture and (2) whether rapid pine establishment can sufficiently
reduce invasive species competition and improve soil health so as to act as a “nurse crop” for
subsequent high-value hardwood species release. Finally, this experiment presents an opportunity for
the long-term comparison of loblolly pine and shortleaf pine that will offer insights into restoration
strategies involving these species, especially under climate change. Specifically, insights on whether
restoration practitioners should consider species not historically native to a state or region (e.g., loblolly
pine in Kentucky) suitable for restoration, given that climate change will shift their distributions.

Acknowledgments: This project was partially funded by a Sustainability Challenge Grant from the Tracey Farmer
Institute for Sustainability and the Environment (TFISE); additional funds were provided by the National Fish
and Wildlife Foundation (NFWF) through the Appalachian Forest Renewal Initiative. The authors gratefully
acknowledge the assistance of the following University of North Carolina students, who assisted in developing
the experimental design, conducting the planting, and collecting data: Joshua Dickens, Helen Drotor, Saideep
Gona, Veronica Kapoor, Peter Oliveira, Levi Rolles, Alicia Wood, Jacob Baldwin, Emma Bogerd, Caroline Durham,

12



Forests 2017, 8, 375

Megan Lott, Tyler Niles, and Victoria Triana. Participation by undergraduate students from University of North
Carolina was generously funded by Brad Stanback and Shelli Lodge-Stanback.

Author Contributions: K.L.S., M.F., and C.D.B. obtained funding; C.D.B., M.F., and G.B. designed and
implemented the planting; G.B., C.D.B., and K.L.S. collected data; K.L.S. analyzed data and prepared
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haering, K.C.; Daniels, W.L.; Galbraith, J.M. Appalachian mine soil morphology and properties: Effects of
weathering and mining method. Soil Sci. Soc. Am. J. 2004, 68, 1315–1325. [CrossRef]

2. Zipper, C.E.; Burger, J.A.; McGrath, J.M.; Rodrigue, J.A.; Holtzman, G.I. Forest restoration potentials of
coal-mined lands in the eastern United States. J. Environ. Qual. 2011, 40, 1567–1577. [CrossRef] [PubMed]

3. Wickham, J.; Wood, P.B.; Nicholson, M.C.; Jenkins, W.; Druckenbrod, D.; Suter, G.W.; Strager, M.P.;
Mazzarella, C.; Galloway, W.; Amos, J. The overlooked terrestrial impacts of mountaintop mining. Bioscience
2013, 63, 335–348. [CrossRef]

4. Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests
and associated ecosystem services on Appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765.
[CrossRef] [PubMed]

5. Davis, V.; Burger, J.A.; Rathfon, R.; Zipper, C.E.; Miller, C.R. Chapter 7: Selecting Tree Species for Reforestation
of Appalachian Mined Lands. In The Forestry Reclamation Approach: Guide to Successful Reforestation of Mined
Lands; Adams, M.B., Ed.; Gen. Tech. Rep. NRS-169; U.S. Department of Agriculture, Forest Service, Northern
Research Station: Newtown Square, PA, USA, 2017; pp. 7-1–7-10.

6. Sena, K.; Barton, C.; Hall, S.; Angel, P.; Agouridis, C.; Warner, R. Influence of spoil type on afforestation
success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Restor. Ecol.
2015, 23, 131–138. [CrossRef]

7. Wilson-Kokes, L.; Emerson, P.; DeLong, C.; Thomas, C.; Skousen, J. Hardwood tree growth after eight years
on brown and gray mine soils in West Virginia. J. Environ. Qual. 2013, 42, 1353–1362. [CrossRef] [PubMed]

8. Cotton, C.; Barton, C.; Lhotka, J.; Angel, P.N.; Graves, D. Evaluating reforestation success on a surface mine
in eastern Kentucky. In Tech. Coords. National Proceedings: Forest and Conservation Nursery Associations-2011;
USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; pp. 16–23.

9. Sena, K.; Angel, H.; Barton, C. Influence of tree shelters and weed mats on growth and survival of backcrossed
chestnut seedlings on legacy minelands in eastern Kentucky. J. Am. Soc. Min. Reclam. 2014, 3, 41–63.
[CrossRef]

10. Fields-Johnson, C.W.; Burger, J.A.; Evans, D.M.; Zipper, C.E. Ripping improves tree survival and growth on
unused reclaimed mined lands. Environ. Manag. 2014, 53, 1059–1065. [CrossRef] [PubMed]

11. Skousen, J.; Gorman, J.; Pena-Yewtukhiw, E.; King, J.; Stewart, J.; Emerson, P.; Delong, C. Hardwood tree
survival in heavy ground cover on reclaimed land in West Virginia: Mowing and ripping effects. J. Environ.
Qual. 2009, 38, 1400–1409. [CrossRef] [PubMed]

12. Barton, C.D.; Sweigard, R.J.; Marx, D.; Barton, W. Evaluating spoil amendment use and mycorrhizal
inoculation on reforestation success in the eastern and western Kentucky coalfields. In Proceedings of the
American Society of Mining and Reclamation, Richmond, VA, USA, 14–19 June 2008; Barnhisel, R.I., Ed.;
pp. 98–111.

13. Hansen, E.; Barton, C.; Drayer, A. Challenges for native forest establishment on surface mines in a time of
climate change. Reclam. Matters 2015, Spring, 36–39.

14. Will, R.; Stewart, J.; Lynch, T.; Turton, D.; Maggard, A.; Lilly, C.; Atkinson, K. Strategic Assessment for Shortleaf
Pine; Oklahamoa Forestry Services: Washington, OK, USA, 2013; p. 58.

15. Oswalt, C.M. Spatial and Temporal Trends of the Shortleaf Pine Resource in the Eastern United States.
In Proceedings of the Shortleaf Pine Conference, East Meets West, Huntsville, AL, USA, 20–22 September
2011; Kush, J., Barlow, R.J., Gilbert, J.C., Eds.; 2012; p. 33.

16. Campbell, W.A.; Copeland, J.O.L. Littleleaf Diseases of Shortleaf and Loblolly Pines; USDA Circular No. 940;
USDA: Washington, DC, USA, 1954; Volume 41.

13



Forests 2017, 8, 375

17. Clarke, S.R.; Riggins, J.J.; Stephen, F.M. Forest management and southern pine beetle outbreaks: A historical
perspective. For. Sci. 2016, 62, 166–180. [CrossRef]

18. Coyle, D.R.; Klepzig, K.D.; Koch, F.H.; Morris, L.A.; Nowak, J.T.; Oak, S.W.; Otrosina, W.J.; Smith, W.D.;
Gandhi, K.J. A review of southern pine decline in North America. For. Ecol. Manag. 2015, 349, 134–148.
[CrossRef]

19. Coyle, D.R.; Green, G.T.; Barnes, B.F.; Klepzig, K.D.; Nowak, J.T.; Gandhi, K.J. Landowner and manager
awareness and perceptions of pine health issues and southern pine management activities in the southeastern
United States. J. For. 2016, 114, 541–551. [CrossRef]

20. Liechty, H.O.; Luckow, K.R.; Daniel, J.S.; Marion, D.A.; Spetich, M.; Guldin, J.M. Shortleaf pine ecosystem
restoration: Impacts on soils and woody debris in the Ouachita Mountains of the southern United States.
In Proceedings of the 16th International Conference, Society for Ecological Restoration, Victoria, BC, Canada,
24–26 August 2004; p. 5.

21. Stewart, J.F.; Will, R.E.; Crane, B.S.; Nelson, C.D. The genetics of shortleaf pine (Pinus echinata mill.) with
implications for restoration and management. Tree Genet. Genom. 2016, 12, 98. [CrossRef]

22. Liechty, H.O.; Luckow, K.R.; Guldin, J.M. Soil chemistry and nutrient regimes following 17–21 years of
shortleaf pine-bluestem restoration in the Ouachita Mountains of Arkansas. For. Ecol. Manag. 2005, 204,
345–357. [CrossRef]

23. Hubbard, R.M.; Vose, J.M.; Clinton, B.D.; Elliott, K.J.; Knoepp, J.D. Stand restoration burning in oak–pine
forests in the southern Appalachians: Effects on aboveground biomass and carbon and nitrogen cycling.
For. Ecol. Manag. 2004, 190, 311–321. [CrossRef]

24. Perry, R.W.; Rudolph, D.C.; Thill, R.E. Reptile and amphibian responses to restoration of fire-maintained
pine woodlands. Restor. Ecol. 2009, 17, 917–927. [CrossRef]

25. Thill, R.E.; Rudolph, D.C.; Koerth, N.E. Shortleaf pine-bluestem restoration for red-cockaded woodpeckers in
the Ouachita Mountains: Implications for other taxa. In Red-Cockaded Woodpecker: Road to Recovery; Costa, R.,
Daniels, S.J., Eds.; Hancock House Publishers: Blaine, WA, USA, 2004; pp. 657–671.

26. Conner, R.N.; Shackelford, C.E.; Schaefer, R.R.; Saenz, D.; Rudolph, D.C. Avian community response
to southern pine ecosystem restoration for red-cockaded woodpeckers. Wilson Bull. 2002, 114, 324–332.
[CrossRef]

27. Masters, R.E.; Lochmiller, R.L.; McMurry, S.T.; Bukenhofer, G.A. Small mammal response to pine-grassland
restoration for red-cockaded woodpeckers. Wildl. Soc. Bull. 1998, 148–158.

28. O’Keefe, J.M.; Loeb, S.C. Indiana bats roost in ephemeral, fire-dependent pine snags in the southern
Appalachian Mountains, USA. For. Ecol. Manag. 2017, 391, 264–274. [CrossRef]

29. Cox, M.R.; Willcox, E.V.; Keyser, P.D.; Vander Yacht, A.L. Bat response to prescribed fire and overstory
thinning in hardwood forest on the Cumberland Plateau, Tennessee. For. Ecol. Manag. 2016, 359, 221–231.
[CrossRef]

30. Burns, R.M.; Honkala, B.H. Tech. coords. 1990. Silvics of North America: 1. Conifers. In Agriculture Handbook
654; USDA Forest Service: Washington, DC, USA, 1990; Volume 1, p. 675.

31. Pile, L.S.; Waldrop, T. Shortleaf Pine and Mixed Hardwood Stands: Thirty-Four Years after Regeneration with the
Fell-and-Burn Technique in the Southern Appalachian Mountains; US Department of Agriculture Forest Service,
Southern Research Station: Asheville, NC, USA, 2016; Volume SRS-56, pp. 1–7.

32. Smalley, G.W.; Bower, D.R. Site Index Curves for Loblolly and Shortleaf Pine Plantations on Abandoned Fields in
Tennessee, Alabama, and Georgia Highlands; USDA Forest Service, Southern Research Station: Asheville, NC,
USA, 1971.

33. Stambaugh, M.C.; Guyette, R.P.; Dey, D.C. What Fire Frequency Is Appropriate for Shortleaf Pine Regeneration
and Survival? USDA Forest Service Northern Research Station: Newtown Square, PA, USA, 2007; Volume
NRS-P-15, pp. 121–128.

34. Stewart, J.F.; Will, R.E.; Robertson, K.M.; Nelson, C.D. Frequent fire protects shortleaf pine (Pinus echinata)
from introgression by loblolly pine (P. taeda). Conserv. Genet. 2015, 16, 491–495. [CrossRef]

35. Ashby, W.C.; Baker, M.B. Soil nutrients and tree growth under black locust and shortleaf pine overstories in
strip-mine plantings. J. For. 1968, 66, 67–71.

36. Walker, R.; West, D.; McLaughlin, S.; Amundsen, C. Performance of loblolly, virginia, and shortleaf pine on a
reclaimed surface mine as affected by Pisolithus tinctorius ectomycorrhizae and fertilization. In Proceedings
of the Biennial Southern Silvicultural Research Conference, Atlanta, GA, USA, 15–17 April 1985.

14



Forests 2017, 8, 375

37. Mattoon, W.R. Life History of Shortleaf Pine; US Department of Agriculture Bulletin 244; US Department of
Agriculture: Washington, DC, USA, 1915.

38. Butler, P.R.; Iverson, L.; Thompson, F.R.; Brandt, L.; Handler, S.; Janowiak, M.; Shannon, P.D.; Swanston, C.;
Karriker, K.; Bartig, J. Central Appalachians Forest Ecosystem Vulnerability Assessment and Synthesis: A Report
from the Central Appalachians Climate Change Response Framework Project; U.S. Department of Agriculture,
Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015.

39. McNab, W.H.; Spetich, M.A.; Perry, R.W.; Haywood, J.D.; Laird, S.G.; Clark, S.L.; Hart, J.L.; Torreano, S.J.;
Buchanan, M.L. Climate-induced migration of native tree populations and consequences for forest
composition. In Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource
Managers in Southern Forest Ecosystems; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014;
pp. 307–378.

40. Zolkos, S.G.; Jantz, P.; Cormier, T.; Iverson, L.R.; McKenney, D.W.; Goetz, S.J. Projected tree species
redistribution under climate change: Implications for ecosystem vulnerability across protected areas in the
eastern United States. Ecosystems 2015, 18, 202–220. [CrossRef]

41. Miller, W.; Miller, D. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 1987,
18, 1–15. [CrossRef]

42. Thomas, G. Soil ph and soil acidity. In Methods of Soil Analysis Part 3—Chemical Methods; Soil Science Society
of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 475–490.

43. Soil and Plant Analysis Council. Soil Analysis Handbook of Reference Methods; CRC Press: Boca Raton, FL,
USA, 2000.

44. Summer, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis.
Part 3. Chemical Methods; Sparks, D., Bartels, J.M., Eds.; Soil Science Society of America, American Society of
Agronomy: Madison, WI, USA, 1996.

45. Angel, P.; Barton, C.; Warner, R.; Agouridis, C.; Taylor, T.; Hall, S. Forest establishment and water quality
characteristics as influenced by spoil type on a loose-graded surface mine in eastern Kentucky. In Proceedings
of the American Society of Mining and Reclamation, Richmond, VA, USA, 14–19 June 2008; pp. 28–65.

46. Fields-Johnson, C.W.; Zipper, C.E.; Burger, J.A.; Evans, D.M. First-year response of mixed hardwoods
and improved american chestnuts to compaction and hydroseed treatments on reclaimed mine land.
In Proceedings of the American Society of Mining and Reclamation, Billings, MT, USA, 30 May–5 June 2009;
Barnhisel, R.I., Ed.; pp. 413–432.

47. Koropchak, S.; Zipper, C.; Burger, J.; Evans, D. Native tree survival and herbaceous establishment on an
experimentally reclaimed Appalachian coal mine. J. Am. Soc. Min. Reclam. 2013, 2, 32–55. [CrossRef]

48. Dipesh, K.; Will, R.E.; Lynch, T.B.; Heinemann, R.; Holeman, R. Comparison of loblolly, shortleaf, and pitch x
loblolly pine plantations growing in Oklahoma. For. Sci. 2015, 61, 540–547. [CrossRef]

49. Michels, A.; Barton, C.; Cushing, T.; Angel, P.; Sweigard, R.; Graves, D. Evaluation of low spoil compaction
techniques for hardwood forest establishment on an eastern Kentucky surface mine. In Proceedings of the
American Society of Mining and Reclamation, Gillette, WY, USA, 2–6 June 2007; Barnhisel, R.I., Ed.; pp. 2–6.

50. Stange, E.E.; Shea, K.L. Effects of deer browsing, fabric mats, and tree shelters on Quercus rubra seedlings.
Restor. Ecol. 1998, 6, 29–34.

51. Robertson, D.J. Trees, deer, and non-native vines: Two decades of northern piedmont forest restoration.
Ecol. Restor. 2012, 30, 59–70. [CrossRef]

52. Clark, E.V.; Zipper, C.E. Vegetation influences near-surface hydrological characteristics on a surface coal
mine in eastern USA. Catena 2016, 139, 241–249. [CrossRef]

53. Evans, D.M.; Zipper, C.E.; Hester, E.T.; Schoenholtz, S.H. Hydrologic effects of surface coal mining in
Appalachia (US). J. Am. Water Resour. Assoc. 2015, 51, 1436–1452. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

15


