We are unable to supply this entire article because the publisher requires payment of a copyright fee. You may be able to obtain a copy from your local library, or from various commercial document delivery services.

From Forest Nursery Notes, Summer 2011

20. © Improved germination of two *Sphaeralcea* A. St.-Hil. (Malvaceae) species with scarification plus stratification treatments. Dunn, B. Native Plants Journal 12(1):13-16. 2011.

IMPROVED GERMINATION OF TWO

Sphaeralcea A. St.-Hil. (Malvaceae) species

WITH SCARIFICATION PLUS
STRATIFICATION TREATMENTS

Bruce Dunn

Figure 1. Scarlet globemallow (A) and desert globemallow (B) blooming in summer.

ABSTRACT

Mechanical scarification plus stratification was most effective in improving germination of *Sphaeralcea ambigua* A. Gray and *Sphaeralcea coccinea* (Nutt.) Rydb. (Malvaceae) in my experiment that compared 4 seed treatments. The pattern of species response to treatments was similar. The control treatment (seeds left at room temperature in original packing envelopes) and the 30-d stratification at 4 °C (39 °F) treatment both yielded low germination (average 12%). Mechanical scarification alone improved germination (average 44%); while the combination of mechanical scarification plus 30-d stratification resulted in an average 65% germination (45% and 85% germination for *S. ambigua* and *S. coccinea*, respectively). Although impermeability of the seedcoat is the main factor preventing germination, embryos also appear to be partially or conditionally dormant. These treatments may have potential for other *Sphaeralcea* species.

Dunn B. 2011. Improved germination of two *Sphaeralcea* A. St.-Hil. (Malvaceae) species with scarification plus stratification treatments. Native Plants Journal 12(1):13–16.

KEY WORDS

dormancy, globemallow, seed propagation, Malvaceae

NOMENCLATURE

USDA NRCS (2009)

Photos by Bruce Dunn