From Forest Nursery Notes, Summer 2011

39. Feeding through the leaves: Scientists study whether foliar fertilization has benefits for tree growers. Landgren, C. and Kowalski, J. Digger 54(8):115-118, 120. 2010.

Feeding through the leaves

Scientists study whether foliar fertilization has benefits for tree growers

These Colorado blue spruce trees (*Picea pungens* 'Hoopsii') receive their first foliar fertilizer treatment during a study recently conducted by researchers at the North Willamette Research and Extension Center.

Partial funding for this project was provided by a grant from the ODA Nursery Research and Regulatory Committee, Helena Chemical and Wilbur-Ellis.

By Chal Landgren and Judy Kowalski

Could the addition of foliar fertilization benefit a Christmas tree plantation or container-grown conifer operation?

That is the short version of a research question and the start of a research project now entering a sec-

ond year. The answer could be one of the following:

a. Fertilization (both liquid foliar or granular application to the soil/media) is of no benefit — at least for plants grown in soil.

b. Granular fertilization provides sufficient plant nutrients alone.

c. Granular fertilizer application provides the "backbone" for needed plant nutrients, and foliar fertilization may provide a boost with the micro-nutrients.

But before getting too far ahead, let's back up and define the experiments used to answer the question posed in the first sentence of this article. To do so, we will break down the answer in two parts by differentiating container grown tree trials from in-field experiments.

116 🕨

An ongoing series provided by Oregon State University in partnership with OAN FARWEST Booth #3090 & #3092

BEAVERLAKE NURSERY

Natives

*Snowberry *Mahonia *Native Roses *Red Flowering Currant *Pacific Dogwood *Evergreen Huckleberry *Kinnikinnick *Sword Ferns *Serviceberry *Red Twig Dogwood *And other native trees and shrubs

QUALITY PLUGS!!!!

Contract Growing Year Round

Ph: **503-632-4787** Fx: **503-632-5412** PO Box 927 21200 S. Ferguson Rd. Beavercreek, OR 97004

www.beaverlakenursery.com

▲ FEEDING THROUGH THE LEAVES

Conifers grown in bark media in containers

In late February 2009, 50 *Picea pungens* 'Hoopsii' (blue spruce) and 50 *Abies nordmanniana* (Nordmann fir) trees were selected from local Willamette Valley conifer nurseries. The trees were of uniform size and color, and were five years of age in 5-gallon containers.

In March, both species were repotted into 7-gallon containers. A custom blended potting mix consisting of 50 percent coarse Douglas fir bark, 30 percent fine Douglas fir bark, 20 percent screened pumice and 3 lbs. per cubic yard of calcium carbonate was used for both species. Old media was gently removed in a water bath during the repotting procedure.

After potting, plants were moved into a retractable roof structure at the North Willamette Research and Extension Center in Aurora, Ore. and placed on a gravel/shade cloth surface. Individual drip irrigation spikes were placed in each pot.

Trees were arranged into random planting spots and labeled for one of five fertilizer treatments. Treatment groups included either a foliar only fertilizer treatment, a controlled release fertilizer (CRF), or a combination of both.

With one of the foliar only treatments, the media was covered with a thin plastic barrier to exclude any fertilizer contact with the media. This was

Treatment #	Type/Products	Analysis	Rate		
1	Foliar/Helena-Kayphol	0-5-32	16 oz/acre		
	Foliar/Helena-CoBo	12-0-0	32 oz/acre		
	Foliar/Helena-PhosCalZn	4-15-0	32 oz/acre		
2	Foliar/Wilbur-Ellis Berry Mix	13-8-8	2 gal/acre		
3	Foliar Tmt #1 w/exclusion	As above			
4	Untreated Control				
5	CRF-Osmocote	18-5-9 (13 month)	182g/pot		
6	CRF-Osmocote+ Tmt #1	Tmt #1 & # 5	As above		

Table 1. Treatments for container trial

Table 2. Foliar nutrient levels after one growing season

		N	Р	К	Ca	Mg	S	В	Fe	MN	CU
Species	Tmts	%	%	%	%	%	%	ppm	ppm	ppm	ppm
Spruce	1	1.1	0.18	0.66	0.20	0.10	0.07	16	44	137	0.6
Spruce	2	1.1	0.19	0.62	0.14	0.09	0.07	14	31	151	< 0.5
Spruce	3	1.3	0.21	0.66	0.14	0.10	0.08	15	45	175	0.9
Spruce	4	1.3	0.22	0.71	0.12	0.09	0.08	13	43	136	0.9
Spruce	5	2.2	0.25	0.96	0.28	0.12	0.12	18	39	326	1.1
Spruce	6	2.1	0.26	1.02	0.34	0.13	0.14	16	52	352	1.6
		N	Ρ	к	Ca	Mg	S	В	Fe	MN	CU
Species	Tmts	N %	P %	K %	Ca %	Mg %	S %	B ppm	Fe ppm	MN ppm	CU ppm
Species Nordmann	Tmts 1					-		10000			
	Tmts 1 2	%	%	%	%	%	%	ppm	ppm	ppm	ppm
Nordmann	1	% 1.2	% 0.18	% 0.77	% 0.23	% 0.13	% 0.09	ppm 17	ppm 77	ppm 182	ppm 1.6
Nordmann Nordmann	1 2	% 1.2 1.1	% 0.18 0.16	% 0.77 0.64	% 0.23 0.16	% 0.13 0.11	% 0.09 0.07	ppm 17 10	ppm 77 100	ppm 182 132	ppm 1.6 1.4
Nordmann Nordmann Nordmann	1 2 3	% 1.2 1.1 1.1	% 0.18 0.16 0.17	% 0.77 0.64 0.75	% 0.23 0.16 0.15	% 0.13 0.11 0.10	% 0.09 0.07 0.08	ppm 17 10 20	ppm 77 100 89	ppm 182 132 162	ppm 1.6 1.4 0.8

done to eliminate concerns about additional foliar fertilization getting picked up by the roots from foliage drip. An untreated control plant received no fertilizer throughout the entire growing season.

Each treatment was replicated nine times. The foliar applications were applied for both species at budbreak and again 30 days later. The CRF applications occurred 30 days before bud break. Application rates appear in Table 1 on Page 116 (opposite).

On August 4, 2009, growth measurements were repeated on both species. Height, caliper and weight data were recorded, as previously done in May. Growth measures were not statistically different between treatments

Both species were kept on a regular irrigation schedule throughout the growing season. Leaching fractions, electrical conductivity (EC) and pH tests were also done periodically during the study.

At the conclusion of one growing season, researchers checked the nutrient levels in the needles of both species in late fall. The results appear in Table 2 (Page 116).

In looking at a statistical analyses, the treatments where CRF was added (5 and 6) had N levels that were significantly above the other treatments. Boron levels were higher in treatments 1, 4 and 6 with the Nordmann fir as a result of foliar sprays containing Boron. Boron was absent in the CRF material.

Growers and buyers might be more interested in visible results. With Nordmann fir, higher foliar nitrogen had a direct and visible correlation with darker green trees. Interestingly, the same visible difference was not evident in the blue spruce. Color was remarkably similar across treatments even though the CRF applications had markedly higher nitrogen levels.

Other interesting "visible" indicators are just now being manifesting. For example, the treatments that showed the highest nitrogen levels in spruce were

 established 1954

 Viewcrest com

 Viewcrest com

www.viewcrest.com Bamboo, Mahonia, Nandina & N thebest@viewcrest.com Container & Field Grown

first to break bud. Growth, too, may show differences this season, though it is too early to measure.

Field grown conifers

The "short version" of this experiment is that soil really complicates field trials in fertility. Unlike uniform bark media, there is no "standard" soil type or site. Christmas tree plantations and nursery sites exist on a wide range of soils each with unique histories of past fertilization and existing soil nutrient profiles. As a result, these experiments showed wide variation from site to site.

In this "trial" a variety of conifer species received foliar and/or soil applied fertilization. The foliar products used were the same as those in the container trial, and were applied at similar rates and timing. These were applied to trees in existing Christmas tree plantations and nursery sites. The mix of conifer species included noble fir, grand fir, Atlas cedar, 'Hoopsii' blue spruce and Nordmann fir.

These field trials were typically installed by growers with the fertilizer applications made via their regular application process, including helicopter, tractor mist blower, tractor PTO tanks or backpack sprayer.

Some of the foliar application sites also received soil applied granular fer-

tilization, most commonly Urea-Sul or custom blends. Treatment block sizes ranged from 40 trees at one site to 10 acres at another. A few sites received no granular fertilizer. Irrigation was minimal to non-existent in these sites.

A total of eight sites were used in the field portion of this trial. The only consistent result across these eight locations was that you could not "see" any differences between treatments. No offcolor rows indicated the spots where fertility was lacking. The control trees looked similar to the foliar application and those looked similar to the ground

120 🕨

Researchers treated the Nordmann fir on the left with a controlled release fertilizer, and used only foliar feeding on the tree on the right. The difference is evident in this photo, taken one year into the study.

▲ FEEDING THROUGH THE LEAVES

At a couple of sites one could measure differences in some nutrients in the fall following application, particularly with nitrogen. In these cases, it appeared that the soil applied materials made the difference.

applied fertilizer applications.

At a couple of sites one could measure differences in some nutrients in the fall following application, particularly with nitrogen. In these cases, it appeared that the soil applied materials made the difference. This is not surprising given the fact that the amounts of nitrogen provided by the foliar applications are small compared to that applied via ground application.

These fertilization trials will be continued on three sites in the year ahead, as growers wanted to see if multiple year applications might show differences.

Chal Landgren is a Christmas tree specialist with the Oregon State University Extension Service. He can be reached at chal.landgren@oregonstate.edu. Judy Kowalski is a research technician at the North Willamette Research and Extension Center in Aurora, Ore. She can be reached at judy.kowalski@oregonstate.edu.

Let's grow together

1 800 323-1047

dwillis@jiffyproducts.com

tbaker@jiffyproducts.com

www.iiffvgroup.com

Contents

August 2010 Vol. 54 No. 8

COLUMNS

- 9 President's Message
- 21 Pivot Points
- 23 What I'm Hearing
- 115 Growing Knowledge

DEPARTMENTS

 Calendar
 Member Profile
 Picks from the Pros
 Picks from the Pros
 Digger Marketplace
 Subscription Info
 Advertisers Index

Cover: "Grow Here" is the theme for the all-new 2010 Farwest Show August 26–28 at the Oregon Convention Center in Portland, Ore. It's your opportunity to create new business relationships, grow your business, and see everything that is new in the way of plants and nurseryrelated products. Turn to Page 51 for the Show Guide, which has complete information on seminars, exhibitors, products and more!

This page: The Farwest Show floor will be packed with several exciting, allnew features, including the Garden Center Pavilion and the New Products Showcase.

AUGUST 26–28, 201 PORTLAND, ORE.

WELCOME TO THE

FARWEST SHOW GUIDE BEGINS ON PAGE 51

2010 Farwest Show

51

FARWEST SHOW GUIDE

The Farwest Show Guide helps you get the most out of your show experience, from exhibitors to seminars to speakers to transportation and food.

99

NEW PRODUCTS SHOWCASE

Find the newest solutions to your problems here.

104

NEW VARIETIES SHOWCASE

The newest and most beautiful plants under the sun can be found here.

131

GETTING CONNECTED

As Manager's Circle presenter and networking expert David Nour explains, there's no substitute for face-to-face contact in building your professional network as well as your business.

