We are unable to supply this entire article because the publisher requires payment of a copyright fee. You may be able to obtain a copy from your local library, or from various commercial document delivery services.

From Forest Nursery Notes, Summer 2009

169. © Root desiccation and drought stress responses of bareroot *Quercus rubra* seedlings treated with a hydrophilic polymer root dip. Apostol, K. G., Jacobs, D. F., and Dumroese, R. K. Plant and Soil 315:229-240. 2009.

Plant Soil (2009) 315:229-240 DOI 10.1007/s11104-008-9746-6

REGULAR ARTICLE

Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip

Kent G. Apostol • Douglass F. Jacobs • R. Kasten Dumroese

Received: 5 June 2008 / Accepted: 3 August 2008 / Published online: 16 August 2008 © Springer Science + Business Media B.V. 2008

Abstract Root hydrogel, a hydrophilic polymer, has been used to improve transplanting success of bareroot conifer seedlings through effects on water holding capacity. We examined mechanisms by which Terra-sorb[®] Fine Hydrogel reduces damage that occurs when roots of 1-year old, dormant northern red oak (*Quercus rubra* L.) were subjected to shortterm (1, 3, and 5 h) pre-transplanting desiccation and long-term (45 days) drought stress following transplanting in a controlled environment chamber or greenhouse conditions. Hydrogel-treated seedlings had 80% greater root moisture content than non-root dipped control seedlings following the pre-transplanting

Responsible Editor: Hans Lambers.

K. G. Apostol • D. F. Jacobs (⊠)
Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources,
Purdue University,
West Lafayette, IN 47907-2061, USA
e-mail: djacobs@purdue.edu

R. K. Dumroese USDA Forest Service, Southern Research Station, 1221 South Main Street, Moscow, 1D 83843, USA

Present address: K. G. Apostol Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, MN 55112, USA desiccation period. Hydrogel reduced root membrane leakiness by 31% 5 h after the desiccation exposure. Hydrogel-treated seedlings did not show greater differences in shoot length, plant dry mass, root volume, net photosynthesis, and stomatal conductance compared with control seedlings following the 45-day drought stress exposure. A reduction in mean number of days to bud break in hydrogel-treated seedlings, combined with delayed tissue moisture loss (linked to higher stem water potential), suggests that hydrogel may have provided stress protection to aid survival under short-term desiccation, which may be beneficial toward alleviating initial transplanting stress.

Keywords Desiccation · Electrolyte leakage · Gas exchange · Hydrogel · Moisture content · Northern red oak · Stem water potential

Introduction

Water deficit serves as a primary cause of transplant stress in forest tree seedlings (Burdett 1990; Haase and Rose 1993). Continuous water stress conditions inhibit plant growth, stomatal conductance, and CO_2 assimilation (Brakke and Allen 1995; Gómez-Cadenas et al. 1996). This desiccation-induced injury may delay root regeneration, which is essential for the establishment of newly-planted seedlings. Desiccation of the root system was associated with increased