We are unable to supply this entire article because the publisher requires payment of a copyright fee. You may be able to obtain a copy from your local library, or from various commercial document delivery services.

From Forest Nursery Notes, Summer 2009

57. © Retranslocation, plant, and soil recovery of nitrogen-15 applied to bareroot black walnut seedlings. Salifu, K. F., Islam, M. A., and Jacobs, D. F. Communications in Soil Science and Plant Analysis 40:1408-1417. 2009.

NOTICE: THIS MATERIAL MAY BE PROTECTED BY COPYRIGHT LAW (TITLE 17, U.S. CODE)

Communications in Soil Science and Plant Analysis, 40: 1408–1417, 2009 Copyright © Taylor & Francis Group, LLC ISSN 0010-3624 print/1532-2416 online DOI: 10.1080/00103620902818062

Retranslocation, Plant, and Soil Recovery of Nitrogen-15 Applied to Bareroot Black Walnut Seedlings

K. Francis Salifu, M. Anisul Islam, and Douglass F. Jacobs

Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, Indiana, USA

Abstract: Although retranslocation or nitrogen (N) derived from plants (NDFP) may account for more than 50% of the annual N demand in new growth of conifer seedlings, the proportional contribution of NDFP vs. current uptake or N derived from fertilizer (NDFF) in new growth of hardwood seedlings is relatively unknown. The current uptake was labeled with ammonium sulfate $[(^{15}NH_4)_2SO_4]$ at the rate of $1.56 \text{ g N plant}^{-1}$ and reared for 90 days in sand culture under greenhouse conditions, and NDFP vs. NDFF was quantified in new growth of half-sib bareroot black walnut (*Juglans nigra* L.) seedlings. Nitrogen derived from plants accounted for 68 to 83% of the total N demand in new shoot growth of black walnut seedlings vs. NDFF (17 to 32%). Recovered applied fertilizer was 43% in soil and 9% in plants. The greater proportion of NDFP in new growth demonstrates the importance of retranslocation in meeting early N demand of transplanted black walnut seedlings.

Keywords: Black walnut, fertilizer recovery, growth, nitrogen, retranslocation, stable isotope

Received 10 August 2007, Accepted 9 March 2008

Address correspondence to Douglass F. Jacobs, Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA. E-mail: djacobs@purdue.edu

1408