Finally - You don't know how happy we are to have this issue of FNN done! It's been a busy, frustrating couple of months. I won't go into the sordid details, but let's just say that it's unnerving to smell burning electrical wiring coming from your computer. Anyway, here it is and we'll try to be more punctual next issue.

Belated Holiday Wishes - Well, we made it through another hectic holiday season. I don't know about you but it seems to start earlier and get more commercial every year. Rather than be cynical about the crass exploitation, I hope that you were able to find the time to reflect on the true meaning of this Special Season, and so feel renewed and ready for the promises of the New Year.

Making FNN Multilingual? - In an effort to make FNN a truly international publication, we are analyzing the possibility of publishing it in Spanish and maybe French. Obviously, the translation and extra printing will be an additional expense and so we need to survey readers to find out if it would be worthwhile. So, if you would like to see a Spanish or French version of FNN, write us a letter and give us your opinion. We will study the costs involved, see if we can find the funding, and then report back to you in the July, 1995 issue.
Contents

- **Nursery Meetings and Workshops** ... 4
- **National Nursery Issues** .. 10
 - Methyl Bromide Fumigation -Update ... 10
- **Ecological Alternatives** ... 13
 - Recycling Nursery Plastics .. 13
 - Contemplating Composts? .. 15
- **Integrated Pest Management** .. 17
 - Rediscovering Heat Treatments ... 17
 - Collembolas For Biocontrol? ... 20
- **Cultural Perspectives** ... 22
 - Treating Irrigation Water .. 22
 - What is a Soil Management Plan, and why would you want one? ... 25
- **Special Publications** .. 30
 - Ordering Information ... 30
- **Products and Services** .. 37
 - A New Post emergence, Nonselective Herbicide .. 37
 - Root Pruning Chemical ... 37
 - Growing Media with Coconut Fiber ... 38
 - Computer-assisted Transplanting ... 38
- **Health and Safety** ... 40
 - Back Belts May Not Protect While Lifting ... 40
- **New Nursery Literature** ... 42
 - Bareroot Production .. 42
 - Business Management .. 43
 - Container Production .. 44
 - Diverse Species .. 46
 - Fertilization and Nutrition ... 48
 - General and Miscellaneous .. 49
 - Genetics and Tree Improvement ... 50
 - Mycorrhizae and Beneficial Microorganisms .. 52
 - Nursery Structures and Equipment .. 53
 - Outplanting Performance ... 55
 - Pest Management .. 58
 - Pesticides ... 63
 - Seedling Harvesting and Storage .. 63
 - Seedling Physiology and Morphology .. 64
 - Seeds ... 68
 - Soil Management and Growing Media .. 72
 - Tropical Forestry and Agroforestry ... 74
 - Vegetative Propagation and Tissue Culture .. 75
 - Water Management and Irrigation .. 78
 - Weed Control ... 79
- **Horticultural Humor** .. 81
- **Literature Order Form** ... 83

January 1995 - Forest Nursery Notes - 3
Nursery Meetings and Workshops

"So Many Meetings, So Little Time"

The 6th biennial meeting of the Northern Container Nursery Association will be held on February 7-8, 1995 at the Claridge Motor Inn in Rhinelander, WI. This two-day meeting will be co-hosted by the Oconto River Seed Orchard and Tourney Nursery of the USDA Forest Service. The agenda features technical sessions the first day followed by an Open Forum dedicated to informal discussions. The second day will consist of field trips to the Consolidated Paper Greenhouses, and the Forth Floral Greenhouse and Garden Center. Contact Bill or Barb for more specific information:

Bill Sery
Oconto River Seed Orchard
18100 Saul’s Spring Road
White Lake, WI 54491
PHONE: 715-276-7400

Barb Jones
J.W. Tourney Nursery
PO Box 445
Watersmeet, MI 49969
PHONE: 906-358-4523

The annual Western Nursery Pathology Workshop will be held on Mar. 20-23, 1995 at the Cypress Inn in Poulsbo, WA. This informal meeting consists of an mixture of technical presentations and discussions, and anyone interested in seedling pathology is invited to attend. This year’s agenda will include a discussion on Alternatives to Methyl Bromide Fumigation. For more information, contact:

Diane Hildebrand
USDA Forest Service, FID
P.O. Box 3623
Portland, OR 97208-3623
PHONE: 503-326-6697
FAX:503-326-5569
The Asean Forest Tree Seed Centre Project is sponsoring an international symposium on "Recent Advances in Tropical Tree Seed Technology and Planting Stock Production" for June 12-14, 1995 in Haad Yai, THAILAND. The program will cover several aspects of seed quality, seedling production, and mycorrhizae and other beneficial organisms. Invited speakers will be followed by voluntary papers and, if you can send them a title and abstract as soon as possible, they will accept papers and posters. A post symposium tour to a nursery, wildlife sanctuary, and tropical forest types. For more information, contact:

Symposium Secretariat
ASEAN Forest Tree Seed Centre
Mauk-Lek, Saraburi 18180
THAILAND
PHONE: 66-36-341-305
FAX: 66-36-341-859

The Integrated Pest Management Course for Forest Nurseries is scheduled for June 7-25, 1995 in Kemptville, Ontario, CANADA. This 10-day course will examine IPM for nurseries and seed orchards within the broad context of diseases, insects, competing vegetation, as well as abiotic problems. The diverse format will include lectures, discussion periods, field exercises and site visits, and will feature world class instructors from across North America. For more details, contact:

Eileen Harvey
Canadian Forest Service
Forest Pest Management Institute
1219 Queen Street East
Sault Ste. Marie, ON
CANADA P6A SM7
PHONE: 705-949-9461
FAX: 705-759-5700

E-MAIL: eharvey@pmoeafpm.fpmi.forestry.ca
The second annual **Southwestern Container Growers' Meeting** will be held in Las Vegas, NM (yes, that's New Mexico!!) on **June 20-21, 1994**, and John Harrington and his staff at the New Mexico State University Mora Research Center will be our hosts. This year's focus topic will be Growing Media and, as always, the format for the meeting will be informal discussions with everyone invited to contribute. In addition to a tour of the Mora Research Center, we will be visiting riparian and mine reclamation outplanting sites. Anyone interested in growing forest and conservation seedlings in containers is invited to attend, but we want to keep this meeting small and informal and so attendance may be limited. For more information, contact me or John Harrington:

John Harrington
New Mexico State University
Mora Research Center
P.O. Box 359
Mora, NM 87732
PHONE: 505-387-2319
FAX: 505-387-9012

Afforestation of First Rotation Sites - Production of Appropriate Seedlings, Seedling Establishment, and Stand Treatment is the title of a pre-IUFRO World Congress meeting being planned for **August 1-6, 1995** in Garpenberg, Sweden and Helsinki, Finland. The meeting is being sponsored by several IUFRO Working Groups including IUFRO S3.02-03 Nursery Operations, and will consist of both technical sessions and field trips in Sweden and Finland. Volunteer papers and posters are now being accepted on the theme topics. Attendance will be limited to 50 persons, so contact Anders Mattsson soon for more specifics:

Anders Mattsson
Swedish University of Agricultural Sciences
Faculty of Forestry
Dept. of Forest Yield Research
5-776 98 Garpenberg
SWEDEN
PHONE: 46-225-26000
FAX: 46-225-26100
Nursery workers wanted - "$1.76 per day plus room and board". No, this isn't a typo. This bulletin was issued by the USDA Forest Service Bessey Nursery in 1918 (Figure A). My, how times have changed! The new, improved **Western Forest and Conservation Nursery Association** will be holding their annual meeting at the Ramada Inn in Kearney, NE on **August 7-11, 1995**. Our host will be Clark Fleege of the USDA Forest Service Bessey Nursery, which has the distinction of being the oldest continuously operated forest nursery in the US. Following on the success of last year's meeting, the agenda for 3-day meeting will consist of morning technical sessions followed by afternoon field trips. Focus topics include nursery safety, fertilization scheduling, marketing and partnerships, and propagation of junipers, and we are soliciting speakers on these or other nursery-related topics. The afternoon field trips will include: Bessey Nursery and Nebraska National Forest, a variety of Great Plains outplantings, and a tour of local historical and recreational attractions. The first meeting announcement will be sent out soon, but if you would like to make sure that you are on the mailing list, contact:

Clark Fleege
USDA Forest Service
Bessey Nursery
P.O. Box 38
Halsey, NE 69142
PHONE: 308-533-2257
FAX:308-533-2213
The **Northeastern Area State, Federal and Provincial Nurseryman’s Association** will be holding their annual meeting at the Spring Mill State Park Inn in Mitchell, IN on **August 14-17, 1995**. Jim Wichman of the Vallonia State Nursery will be our host. The agenda is still being developed and features panel discussions on cultural and management topics as well as a tour of the nursery. The Spring Mill State Park features old-growth hardwood stands and historical attractions making this an ideal summer vacation for the family. If you would like more information, contact:

Jim Wichman
Indiana Div. of Forestry
Vallonia State Nursery
2782 W. County Road 540 S.
Vallonia, IN 47281
PHONE: 812-358-3621
FAX:812-358-3621

The 36th annual meeting of the **Western Region of the International Plant Propagators’ Society** will be held at the Red Lion Columbia River Hotel in **Portland, OR on Sept. 14-16, 1995**. The agenda is still being developed but will include many topics of interest to people working in forest and conservation nurseries. The Portland area has many ornamental nurseries as well as those growing forest and conservation species. These IPPS meetings are an excellent opportunity to expand your horticultural horizons and I hope to see you there. Additional information can be obtained from:

IPPS Membership
Wilbur Bluhm
IPPS, Western Region
743 Linda Avenue NE
Salem, OR 97303
PHONE: 503-393-2934

Program Chairman
Allan Elliott
Carlton Plants
P.O. Box 398
Dayton, OR 97114
PHONE: 503-868-7971
FAX:503-868-7503

8 - Forest Nursery Notes - January 1995
The annual meeting of the **Forest Nursery Association of British Columbia** will be held at the Harrison Hot Springs Hotel on **Sept. 18-20, 1995**. The tentative agenda is still under development but currently contains technical sessions and a field trip to the Chilliwack Valley. The dates for the meeting were chosen so that attendees could travel to the Western Canadian Horticultural Trade Show which opens in Vancouver on Sept. 20th. If you would like more information, contact:

Bruce Morton
Hybrid Nurseries, Ltd.
12682 Woolridge Road
Pitt Meadows, BC
CANADA V3Y 1Z1
PHONE: 604-465-6276
FAX: 604-465-9829

The University of Montana and Bitterroot Native Growers, Inc. will present a symposium on **The Restoration of Disturbed Lands: an Ecological Approach** at the Holiday Inn in Missoula, Montana on **October 31- November 3, 1995**. The goal of this conference is to explore the theoretical and technical aspects of restoring disturbed wildlands through a dialogue between restoration scientists and practitioners. Proposed technical sessions include the soil environment, genetics, ecophysiology, community ecology, horticulture as well as specific case studies. Field trips to the Bitterroot Native Growers container nursery, and highway, mineland, and riparian restoration projects in the area. For more information, contact:

Clare Kelly
University of Montana
Continuing Education
Missoula, MT 59812
PHONE: 406-243-4623
FAX: 406-243-2047
National Nursery Issues

Methyl Bromide Fumigation - Update

As we have been discussing in FNN for the past several years, the future of methyl bromide fumigation is in jeopardy. Because it is thought to contribute to the depletion of the protective ozone layer in the earth's atmosphere, the US Environmental Protection Agency (EPA) has ruled that methyl bromide production be frozen at current levels until it is completely banned by the year 2001. See Watson and others (General and Miscellaneous in New Nursery Literature Section) for a very complete history of the basis for the ban. There are some rumors that to encourage early removal of the product from the market a $1 to $3.50 per pound tax will be added to the cost of methyl bromide fumigants. The typical cost of fumigating an acre is about $1300 and, if this tax does go into effect, the cost would increase to $1650 to $2500 per acre.

Soil fumigation is the most common use of methyl bromide and we in North America are among the principal users (Table 1):

<table>
<thead>
<tr>
<th>Regions</th>
<th>Soil</th>
<th>Quarantine/Commodity</th>
<th>Structural</th>
<th>Chemical Intermediates</th>
<th>Total</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,381</td>
<td>325</td>
<td>132</td>
<td></td>
<td>1,838</td>
<td>(2.8)</td>
</tr>
<tr>
<td>Asia</td>
<td>8,400</td>
<td>5,265</td>
<td>906</td>
<td>34</td>
<td>14,605</td>
<td>(21.9)</td>
</tr>
<tr>
<td>Australia</td>
<td>693</td>
<td>185</td>
<td>50</td>
<td></td>
<td>928</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Europe</td>
<td>16,582</td>
<td>991</td>
<td>644</td>
<td>902</td>
<td>19,119</td>
<td>(28.7)</td>
</tr>
<tr>
<td>North Africa</td>
<td>367</td>
<td>65</td>
<td>---</td>
<td>---</td>
<td>432</td>
<td>(0.6)</td>
</tr>
<tr>
<td>North America</td>
<td>22,743</td>
<td>1,219</td>
<td>1,382</td>
<td>2,757</td>
<td>28,101</td>
<td>(42.2)</td>
</tr>
<tr>
<td>South America</td>
<td>1,140</td>
<td>361</td>
<td>120</td>
<td>---</td>
<td>1,621</td>
<td>(2.4)</td>
</tr>
<tr>
<td>Total</td>
<td>51,306</td>
<td>8,411</td>
<td>3,234</td>
<td>3,693</td>
<td>66,644</td>
<td>(100.0)</td>
</tr>
</tbody>
</table>

(%): (77.0) (12.6) (4.9) (5.5) (100.0)
Nurseries that have used methyl bromide fumigants have divided into 2 philosophies. The first group is convinced that the loss in inevitable, and so are already switching to other chemical or cultural alternatives. Others believe that new research and political pressure will result in a lifting or a modification of the EPA ban that would allow methyl bromide fumigation to continue. Let's take a look at both positions:

Methyl bromide alternatives - Methyl bromide is still the most effective and popular soil fumigant and comparisons with other chemicals have shown that nothing has such broad spectrum effectiveness. Some other alternative fumigants are already in operational use in forest and conservation nurseries, however. Dazomet (Basamid®) is the most common and does an acceptable job, although it causes phytotoxicity with adjacent crops such as western white pine. Tests with pure chloropicrin show fair control of soil pathogens, but it does not kill weed seeds. Tests with Triform® (a mixture of dichloropropene and chloropicrin) are underway in the South. Howard Ohr at the University of California-Riverside (909-7874140) is testing methyl iodide, a close chemical relative of methyl bromide, which may hold promise for soil fumigation. Although methyl iodide is currently expensive, the production costs would necessarily go down if the demand increases. The best part if that its ozone depleting potential less than 0.2, compared to 0.6 for methyl bromide.

Biological control alternatives, such as mycorrhizal fungi and antagonistic rhizobacteria, are also being tested and some show encouraging results. Other biological alternatives, such as brassica cover crops and organic matter amendments, have not lived up to expectations. Solar and heat sterilization are also being tested operationally and heat treatments seem particularly promising if the application technology can be worked out (See Integrated Pest Management section for more discussion).

Other studies on methyl bromide alternatives are currently underway. A comprehensive project to evaluate several alternative control technologies for soilborne pathogens is being conducted by the Forest and Insect Disease branch of the USDA Forest Service at nurseries across the US. The Southern Forest Nursery Management Cooperative at Auburn University is studying alternative fumigants and they have concluded that methyl bromide is hard to beat because it controls all soil pests for up to 2-3 years. They also analyzed 33 published articles on fumigation in forest nurseries and found that most fumigants gave better seedbed densities and an increase in seedling size compared to the controls. Methyl bromide fumigants consistently gave the best results and metham-sodium was second in efficacy. The USDA Agricultural Research Service (ARS) is also funding research into methyl bromide alternatives for soil fumigation. Several other recent publications are also listed in the New Nursery Literature Section.

Methyl bromide promoters - Other people are convinced that the EPA is overreacting and have organized to defend methyl bromide fumigation. The Methyl Bromide Working Group, a consortium of companies that produce and distribute fumigants, is mounting a vigorous campaign to educate policy makers and support more scientific research. They have filed a lawsuit in the US Court of Appeals that challenges the EPA decision to ban methyl bromide, and plan to file other legal petitions directly with that agency. According to their director, Peter Sparber, they believe that they have an excellent chance of exempting methyl bromide from the Clean Air Act well before the final ban takes effect. The Methyl Bromide Global Coalition is an international group of methyl bromide manufacturers who are supporting research to investigate the possible contribution of methyl bromide generated by human activities to stratospheric ozone depletion. All of this.
research will be completed within the next 3 years so that it can have the greatest impact on policy makers. The Coalition is also publishing an informational newsletter that discusses what is currently known about methyl bromide in the atmosphere (Figure B), its use around the world, and regulatory considerations in the development of alternatives. For a copy of the newsletter or just for more information, contact:

Peter Sparber, Director
Sparber and Associates, Inc.
1319 F Street, NW; Suite 301
Washington, DC 20004
PHONE: 202-737-6327
FAX: 202-393-4385

I’ll continue to remain neutral as to the pros and cons of methyl bromide use, but I am pleased to see that we will finally get the basic research to answer the question of whether forest and conservation nurseries can use methyl bromide fumigants with a clear conscience.

Sources:

Ecological Alternatives

Recycling Nursery Plastics

Forest and conservation nurseries have a professional obligation to practice recycling, and set a good example for other industries. I'm sure that you are all recycling waste paper, aluminum, metal, and motor oil but what do you do with all your used plastic? Even for the dedicated recycler, finding somebody who will accept plastics has been a challenge. There are two basic problems. The first is that there are so many different types of plastics, and the second is that markets for used plastics vary across the nation. Most people are familiar with the recyclability of pop bottles and milk jugs, because they have very strong markets nationally. Until lately, there has been little demand for used nursery plastics and so they have been discarded into landfills. Recently, however, several firms have been working to develop markets for used nursery plastics. Before we get to that however, let's discuss the various types of plastics.

Plastics are made from polymer resins and the seven most common types can be identified by a number surrounded by the triangular "chasing arrows" symbol on the bottoms of plastic containers (Figure C). Plastics must be sorted into these categories before recycling because each resin has its own properties such as specific melting temperatures and processing qualities. The four most common nursery plastics are marked with an asterisk (Table 2):

![Figure C. Recycling symbols indicate types of plastics]

Table 2. Types of plastics and some examples of domestic and nursery use

<table>
<thead>
<tr>
<th>Code</th>
<th>Resin Type</th>
<th>Common Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polyethylene Terephthalate (PET)</td>
<td>Pop and mineral water bottles, clear or colored</td>
</tr>
<tr>
<td>2</td>
<td>High Density Polyethylene (HDPE)</td>
<td>Milk/water jugs, grocery bags, detergent, and auto oil bottles.</td>
</tr>
<tr>
<td></td>
<td>“Blown” type</td>
<td>Margarine tubs. Nursery trays, cells, and block containers.</td>
</tr>
<tr>
<td></td>
<td>“Injected” type</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Polyvinyl Chloride (V)</td>
<td>Food wrap and vegetable oil bottles.</td>
</tr>
<tr>
<td>4</td>
<td>Low Density Polyethylene (LDPE)</td>
<td>Grocery produce bags. Greenhouse poly coverings, mulch plastic sheeting, growing media and fertilizer bags, and some containers.</td>
</tr>
<tr>
<td>5</td>
<td>Polypropylene (PP)</td>
<td>Food tubes and jar lids. Some nursery pots.</td>
</tr>
<tr>
<td>6</td>
<td>Polystyrene (PS)</td>
<td>Styrofoam cups, yoghurt containers, plates, meat trays, clear plastic cups. Block containers.</td>
</tr>
<tr>
<td>7</td>
<td>Others</td>
<td>Other resins or multiple resin.</td>
</tr>
</tbody>
</table>
Note that in the #2 HDPE plastic category there are two forms: blown (bottle style) and injection molded (tub style). Often, these must be separated before recycling because the resins are of different thicknesses and therefore can not be melted down together. This may also be true for other items - like different types of plastic bags (the smooth bags are #4 and the stiffer crinkly bags are #2). The rule of thumb is to always ask your recycler exactly what is accepted and how it should be sorted and prepared.

The Oregon Association of Nurserymen (OAN) has been working with local nurseries to establish a recycling program for used nursery plastics such as polyethylene film and containers. The program is still in its infancy but markets for used poly tarps have developed in Asia. Other firms are also developing markets for used nursery plastics. National Waste Technologies, Inc. is making plastic wood out of 50% used poly film, and for this use, it does not have to be completely clean.

The secret to recycling film plastic (#4) is to separate it by colors, clean it, and keep it clean. Mulch plastic is already in strips and poly coverings can be cut lengthwise along the furring strips to produce plastic sheets approximately 22 x 100 ft. (6.7 x 30.5 m). There are several hand- or tractor-powered rollers that can be used to process the film as it is removed from the ground or from structures (Figures D and E). Most use a PVC pipe as a core and are powered by the tractor PTO. Using a plastic sheet as a ground cover keeps the film strips from getting dirty, and the slick sheets also make the rolling easier by reducing ground friction. Stationary balers and conventional hay balers have also worked, and by using plastic baling twine, the whole bale can be shredded at the recyclers.

In addition to film plastic, the OAN program will also accept used containers of types #2, #5, and #6. In order to finalize the recycling markets, we need to know how much used nursery plastic could be available. So, if you would like to participate in this program, please contact Ron Lapotin with a list of what types of used plastics that you have, an estimate of how much (weight or volume), and when they would be available:

Ron Lapotin
Oregon Garden Products
3150 SE Winter Bridge Road
Hillsboro, OR 97123
PHONE: 503-640-4633 ext.205
FAX:503-357-4871

I would also be most interested in the details of other recycling programs for used nursery plastics, so please let me know and I'll pass on the information in the July 1995 issue.
Both bareroot and container nurseries are potential markets for composts produced from organic and municipal waste. Composts are an excellent nursery soil amendment because they encourage the formation of aggregates, improve soil tilth, and stimulate the microbial component of the soil. Bareroot nurseries can also use composts as organic mulches. For container nurseries, composts are being tested in a wide variety of artificial growing media, and this trend will only increase in the future. In fact, because forest and conservation nurseries produced non-consumptive plants, there is even more opportunity to use municipal composts that may pose health hazards when used on food crops.

Before using any type of compost, however, nursery managers should consider the following questions:

1. **What is compost?** There is no such thing as a standard or typical compost. Rather, it is a complex mixture of humus-like constituents such as partially decomposed organic wastes, the decomposing organisms, and the microbial by-products.

2. **What is this particular compost made from?** Municipal and industrial composts are the most variable type because their quality depends on the source material. In particular, be aware of toxic contaminants that could poison your seedlings or harm your workers. Some composts contain a high proportion of inert materials such as stones, glass, or plastic that may lower their value as a soil amendment.

3. **What is the pH and mineral nutrient level?** Composts contain organic nutrients and so not only affect fertility directly, but also indirectly through their effect on pH. Many composts have a neutral pH but others can be as high as 8.5, which could cause serious nutrient availability problems. The overall nutrient composition of municipal composts is typically low compared to traditional fertilizers. Milorganite®, which has been used in forest nurseries for several decades, has a fertilizer

Sources:

Contemplating Composts?

Recycling of organic wastes is becoming big business. Instead of ecological altruism, however, this trend is due to legal and economic considerations. For example, recent legislation in Michigan has completely banned disposal of yard waste in landfills and solid waste incinerators. And in California, communities are currently required by law to utilize 25% of their municipal waste for composting and by the year 2,000, this will increase to 50%. Financial incentives may become available to develop new markets for compost products. For example, the California Integrated Waste Management Board has allocated over $350,000 to encourage the use of municipal composts in agriculture.
If the compost is immature or became anaerobic during storage, toxic acetic acids can form and may prove phytotoxic to sensitive plants after application. High soluble salts, and sodium in particular, are another common problem, especially with composts containing a high proportion of manure or municipal sludge.

Most serious problems with compost quality can be identified by asking a few simple questions. If you want to be sure, request a chemical analysis and specify the following: pH, electrical conductivity (soluble salts), major nutrients, and potentially toxic chemicals. Another good idea is to obtain a sample of the compost, mix it with the appropriate amount of soil or growing media components, and perform a seedling germination bioassay. Researchers are attempting to develop simple tests of compost biomaturity that are cheap and easy to use. A light absorption test, similar to the glucometers already used by diabetics, shows particular promise and may soon be on the market.

Composts are an inexpensive source of organic matter and forest and conservation nurseries should help to develop new markets, from an ecological as well as economic standpoint.

Sources:

There is also the potential for mineral nutrient imbalances. In particular, many composts that are made from wood wastes have a very low carbon-to-nitrogen (C:N) ratio. If these materials are used before they have fully matured, the decomposing microorganisms will outcompete your seedlings for nitrogen and induce a serious deficiency which is expressed as chlorosis and stunting. Bareroot nurseries that have added too much uncomposted sawdust to their seedbeds have learned this lesson all too well. Incorporating immature composts during the fallow year and supplementing with nitrogen fertilizer gives them time to "compost in place", and will prevent nitrogen availability problems.

4. How sensitive is my crop? In general, most forest and conservation plants can tolerate composts in almost any form if they are applied at the proper rate, in the proper manner, and at the proper time. Newly-sown seedlings will be much more sensitive than transplants, however.

Figure F. Milorganite® fertilizer is made from municipal waste from Milwaukie, WI.
Integrated Pest Management

Rediscovering Heat Treatments

One of the basic tenets of Integrated Pest Management (IPM) is to minimize the use of pesticides. In the July, 1994 issue of FNN we discussed the use of chlorine as a least-toxic chemical treatment, but it would be even better to use no chemicals at all. Heat treatments had been used to control agricultural pests for decades, but easy accessible and inexpensive chemical pesticides have made them less attractive in recent years. Now, with the potential loss of some pesticides, such as methyl bromide fumigants, growers are rediscovering heat treatments.

Heat can be used for "sterilization" or "pasteurization" depending on the objectives of the treatment. Sterilization kills all the organisms, and requires higher temperatures than pasteurization, which is intended to selectively kill pathogens. The types of pests controlled depends on the temperature (Figure G). Although some nursery pests such as weeds are not killed until very high temperatures, premoistening to promote germination can make them much more susceptible. Operationally, the controlling factors are treatment temperature and length of contact time. The target temperature and the treatment time will depend on the type of application.

Heat has several potential uses for controlling pests:

1. Sterilizing equipment and growth containers.
2. Pasteurizing soil or growing media.
3. Sanitizing seeds or cuttings.

Sterilizing growth containers - For the last 20 years, container growers have used a variety of chemicals to sanitize their used containers but many of these materials, such as bleach, are irritating to nursery workers or may contribute to water pollution. It was also difficult to completely eradicate residual pests from containers with rough cell walls, such as styrofoam blocks. In the overall effort to reduce chemical use, several growers in the Pacific Northwest began operational trials to use heat to sterilize their containers. Heat can be applied in a couple of different ways: steam sprays, or hot water dips. The latter technique was found to be most effective because the temperature and treatment time were easier to monitor and control. Many nurseries have designed custom

![Figure G](attachment://figure_g.png)

Figure G Any source of heat can be used but the types of pests controlled depends on temperature (modified from Baker and Roistacher, 1957)
Steam is much more efficient way of heating soil than hot water because when steam is injected, 970 Btu's of heat are released in the phase change back to water. Although 2 methods of steam treatment (free-flowing and aerated) are common, aerated steam systems are advantageous because they use less steam, provide more rapid and even heating, and after treatment, they allow the soil to cool more quickly.

The challenge is to design a practical and economical field application system. In the 1950's, steam rakes and blades (Figure H) were commonly used to treat soils but this technology was all but abandoned when the development of methyl bromide fumigation. Several growers are beginning to experiment with steam soil pasteurization. Operational trials in Florida have shown that the steam treatment eliminated Fusarium, Pythium, root knot and other diseases from Chrysanthemum cutting beds, and is cost-competitive with methyl bromide. In 1995, the USDA Forest Service, Missoula Technology

Steam pasteurization of soils - With the proposed phase-out of methyl bromide fumigation, there is renewed interest in heat as a way to pasteurize bareroot nursery soils. The amount of heat required to raise the temperature of a given volume of soil depends on its physical characteristics, moisture content, and the desired increase in temperature. Most plant pathogenic bacteria and fungi can be eliminated by raising the temperature to around 160 °F (72 °C), and so most sources recommend maintaining a temperature of 140 to 177 °F (60 to 80 °C) for at least 30 minutes. The rate at which heat must be supplied depends on how quickly the soil must be brought up to the treatment temperature. For most applications, 30 minutes of heating time is recommended giving a total treatment time of 1 hour.

The following time/temperature combinations have proven effective at the USDA Forest Service, Coeur d' Alene Nursery (Table 3):

Table 3 - Treatment temperatures and times for sterilizing used containers

<table>
<thead>
<tr>
<th>Dipping Temperature</th>
<th>Dipping Time</th>
<th>Ray Leach Cells</th>
<th>Styrofoam Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 68</td>
<td>< 155</td>
<td>Ineffective</td>
<td>Ineffective</td>
</tr>
<tr>
<td>68 to 70</td>
<td>155 to 159</td>
<td>30 seconds</td>
<td>2 minutes</td>
</tr>
<tr>
<td>71 to 73</td>
<td>160 to 164</td>
<td>15 seconds</td>
<td>2 minutes</td>
</tr>
<tr>
<td>74 to 88</td>
<td>165 to 190</td>
<td>15 seconds</td>
<td>1 minute</td>
</tr>
<tr>
<td>> 88</td>
<td>> 190</td>
<td>Damages</td>
<td>Damages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Containers</td>
<td>Containers</td>
</tr>
</tbody>
</table>

Steam rake

Canvas cover

To Winch

Steam rake

Steam Blade

Slot for steam

To Winch

Figure H In the years before methyl bromide, steam rakes (A) and blades (B) were used to heat treat nursery seedbeds. (From Bartok, 1994)
and Development Center (MTDC) will build a prototype machine to steam treat nursery beds and obtain data on its effectiveness and operation costs. One key design feature will be to design a tarp or some other way to maintaining the target temperature for the required treatment time. I’ll report the results of the operational trials in future issues of FNN.

Sanitizing seeds and cuttings - Hot water soaks have been traditionally used to soften the seed coat of legumes and other hard seeded species. Although this is undoubtedly effective, the heat treatment also sterilizes the seed coat, removing pathogens that could reduce germination. Seeds of ornamental species are often soaked in hot water prior to sowing. The seeds are placed in mesh bags and immersed in water at approximately 50 °C (122 °F) for 30 minutes, and then cooled in running tap water.

Hot water is also being used to disinfect cuttings prior to sticking. For example, immersing tropical ornamental cuttings in hot water [49 °C (121 °F) for 10 min], followed by a hormone treatment significantly increased rooting compared to either treatment used alone. Brief exposure to very hot water has also shown promise for eliminating whiteflies, scale insects, and mites on stock plants, and application equipment is currently under development.

Hot water as a herbicide? - One of the newest uses of heat in agriculture is for controlling weeds. The Aqua Heat® company is marketing a line of equipment that will kill weeds on contact by spraying them with water just below the boiling point. The heat melts the epicuticular wax on the leaves of the weeds and then they die from desiccation within a couple of days. Sprayers are available for non-crop land, under orchards, and even within-row applications. For more information, contact:

Aqua Heat
5155 East River Road, Suite #405
Minneapolis, MN 55421
PHONE: 612-572-9884
FAX:612-572-9893

So, it seems that heat treatments are coming back into vogue as a component of nursery IPM programs. I’d be interested in hearing of any more applications that you might be willing to share.

Sources:

Collembolas For Biocontrol?

The potential loss of methyl bromide fumigants is forcing us to take a harder look at biocontrol of soil pathogens. As discussed in the Section on Soil Management Plans, nursery soils are a complex of physical, chemical, and biological factors. The possibility of biological control has not been thoroughly investigated in forest and conservation nurseries, but the future direction of disease management is likely to involve increasing the biological density and diversity of beneficial organisms in nursery soils. Fumigated soils are “brittle” because the balance between pathogens and beneficials has been seriously disturbed.

The change from a simplified soil ecosystem managed by periodic fumigation to a healthy soil ecosystem where pathogens are limited by natural dynamics requires greater understanding of the soil microorganisms and a more holistic approach to management. Most biological control research regarding pathogenic soil fungi has focused on bacteria or beneficial fungi while soil animals have been largely ignored.

Many small animals, especially the collembolans, are mycophagous and feed on fungi associated with plant roots. Collembolans are small [0.5 to 8 mm (0.02 to 0.31)] wingless insects that are found in virtually all soils, and over 5,000 species have been described. Along with mites, they are the most abundant arthropods in soil. They are known as springtails due to the presence of the furculum on their abdomen, which serves as a spring and allows them to jump away from predators (Figure I).

Collembolans are especially common in the rhizosphere, where fungal food sources are readily available. Several species are active feeders on pathogenic soil fungi such as *Fusarium* spp. and thus, there is a potential for biocontrol. Tests in Japan have demonstrated effective management of *Fusarium* on cucumbers by the collembolan *Sinella curviseta*. Examination of gut contents of collembolans from pot cultures have revealed that they also eat mycorrhizal fungal hyphae and spores. In natural soil systems, however, collembolans are very selective and feeding preference studies found that they preferred conidial forming fungi, such as *Fusarium*, and did not damage...
mycorrhizae. The best possibilities for biocontrol may involve a combination of collembolans and beneficial soil fungi. *Rhizoctonia solani* on cotton was suppressed by a combination of three biocontrol fungi, *Trichoderma harzianum*, *Gliocladium virens*, *Laetisaria arvalis* and the collembolan *Proisotoma minuta*.

Further research is needed to identify the appropriate collembolan species that feed on a particular fungal pathogen, and to manage the soil environment to facilitate suppression. Collembolans have been shown to be sensitive to changes in soil structure, temperature, water content, and pH and so the challenge will be to maintain an attractive soil environment: high organic matter, good soil structure, and moist water content. A better understanding of natural control mechanisms, such as collembolans and beneficial soil fungi, will allow nursery managers to maintain a healthy soil micro-environment and less the need for chemical control.

Source:
This article is modified from: Klironomos, J.; Bainbridge, D. 1994. Collembolas: possible control for *Fusarium* and *Rhizoctonia*. Unpublished Report. San Diego, CA: San Diego State University, Biology Department. 6 p. They cited the following:

Cultural Perspectives

Treating Irrigation Water

As you all know, water is the life-blood of your nursery. I’m sure that your source of irrigation water was tested when the nursery was developed but water quality does change. Surface water sources can easily become contaminated from runoff and even very deep aquifers that were once considered to be pristine have been found to be contaminated by nitrates or pesticide residues. Therefore, more and more nurseries are installing some sort of water treatment system to protect their crops.

Before you consider buying the same system that your neighbor has, remember that you have to know exactly what contaminants you want to get rid of. Keep these two points in mind:

* No single water treatment will correct all water quality problems, and so it may be necessary to install several systems in a series. Be wary of vendor claims and talk to water quality specialists and other nurseries before investing in a system.

* All systems have limitations and life expectancies, and require routine maintenance, monitoring, or both.

The performance of the major types of water treatment systems should be compared side by side in terms of how they work, what they remove, and what are their limitations (Table 4).

Distillation

How it works: Impurities are isolated when the water evaporates, and the steam is cooled and condenses into distilled water.

What it removes: Salt, nitrates, heavy metals.

Limitations: Distillation is slow and consumes considerable energy, and is therefore relatively expensive. Distilled water can corrode some metals such as iron and copper.

Activated carbon filters

How it works: Water is filtered through carbon granules that chemically adsorb impurities.

What it removes: Volatile organic chemicals, some pesticides, and odor, color, and taste problems.

Limitations: Filters must be replaced regularly or contaminants will be released back into water. Poorly maintained filters can be breeding grounds for bacteria.

Reverse osmosis (RO)

How it works: A semipermeable membrane filters out dissolved impurities (Figure J).

![Reverse Osmosis Diagram](Figure J. Reverse osmosis works by applying pressure and forcing water through a semipermeable membrane (modified from Bienbaum 1994))
What it removes: Inorganic minerals, especially salts such as sodium, calcium, magnesium, boron etc. Also effective on volatile organics and some pesticides.

Limitations: The main problems are that the process takes time, and so treated water must be accumulated in storage. RO membranes are expensive, and must be regularly maintained. As much as 20-50% of intake water is discarded and this very saline water needs to be disposed of properly.

Ion exchange systems (e.g. water softeners)

How it works: Canon and anion exchange systems are different and so remove different contaminants.
minerals. For a typical domestic water softener, water passes through resin beads that are periodically recharged with sodium ions, where they are exchanged for calcium and magnesium ions which are then flushed from the system.

What it removes: Calcium and magnesium (hard water), and iron and manganese in low concentrations. Anion exchange units remove nitrate, but cation exchange units will not.

Limitations: Sodium is added to the water during treatment and so typical water softeners should NEVER be used in a nursery application.

Mechanical filtration

How it works: Many different types are available using sand, filter paper, and other straining materials.

What it removes: Dirt, sediment, weed seeds, and insoluble iron and manganese

Limitations: Mechanical filtration does not remove dissolved salts and, depending on the filter size, smaller pathogens (Figure K).

![Diagram of filtration process](image)

Figure K. Inorganic particles and some pests can be filtered from nursery irrigation water (modified from Tchobanoglous and Schroeder, 1983)

Chlorination (also see section in July, 1994 issue of FNN)

How it works: Liquid injectors meter chlorine into the water in direct proportion to water flow. Granular products can be added to ponds or tanks where they dissolve into reactive chlorine, which remains effective for a period of time.

What it removes: Bacteria, fungi, and other microbial pests

Limitations: The system must be designed to provide adequate contact time. Chlorine is corrosive, and injection systems must be properly maintained.

Ultraviolet (UV) radiation

How it works: A special light bulb generates UV radiation which kills biological organisms in the water line.

What it removes: Bacteria, fungi, and other microbial pests

Limitations: May not be effective when water flow is too fast or water is clouded with suspended particles. UV does not have a residual effect like chlorine.

Ozonation

How it works: A corona discharge generator converts air to ozone, which is injected into a water line where it kills microbes after a contact time of around 4 minutes.

What it removes: Bacteria, waterborne fungi, nematodes.

Limitations: Ozone does not have a residual effect like chlorine, but is safer to use and can be cheaper.
What is a Soil Management Plan, and why would you want one?

Next to water, soil is the most important resource of a bareroot nursery, and must be properly managed if the nursery is to be successful. Soil quality is not fixed, but instead, soil is living and constantly changing. Even the most productive nursery soil can be ruined by improper cultural practices. Seedling harvesting is particularly harmful. Bareroot seedlings differ from most other crops in that the entire plant, including the roots, is removed and so little organic matter is returned to the soil. Due to the necessity of having to lift bareroot seedlings during the dormant winter period when the weather is often wet, soil structure can be seriously damaged within a relatively few years (Figure L).

Many soil problems can be avoided by careful nursery site selection, but economic and political considerations often outweigh biological factors when a new nursery is established. Few nursery managers have had the luxury of participating in the selection of their nursery site, and so must manage their soil in the best way that they can. Frequently, new nursery managers find that they have inherited a worn-out soil that must be coaxed back into full productivity.

Bareroot seedling production is a complex interplay between the physical, chemical, and biological properties of the soil, and the cultural operations used at the nursery. Cultural practices, such as fertilization and irrigation, must be properly scheduled and executed to complement the unique characteristics of individual nursery soils. For example, even moderately saline or alkaline water can severely reduce soil productivity if irrigation is improperly applied.
Steps in Developing a Soil Management Plan

Soil management must be approached in a planned, systematic manner. Because of the complex nature of a productive nursery soil, a series of spontaneous, unrelated cultural treatments will not produce the desired result. Soils are unique - there are no two nurseries that will have exactly the same soil conditions. For this reason, each nursery should attempt to develop a written soil management plan that considers the special nature of their nursery soils. Because of differences in economics and management objectives, the exact size and complexity of the plan will vary with the size and resources of the nursery.

A typical nursery soil management plan consists of four sequential processes:

1. **Mapping nursery soils** - an accurate soil survey is the foundation of a functional soil management plan but I have found that many nurseries do not have an up-to-date soil map.

2. **Analyzing soil survey results** - the results from the soil survey must be interpreted and correlated to seedling growth.

3. **Assessing soil production potential** - soil survey results must be integrated with operational realities.

4. **Implementing and updating the plan** - soil management is a continuing process, and so the plan will need to be periodically adjusted to reflect changing soil conditions or production goals.

Let's look at the first step: Mapping nursery soils

Obtain general soil survey information about your nursery - One of the best sources of soils information is the USDA-Soil Conservation Service (SCS), which conducts largescale soil surveys across the nation. Packets containing maps and descriptions of the major soil types occurring around the nursery are available by county from the local SCS office. Although the information from these surveys is too general to use for the Soil Management Plan, they will give a good idea of the soil types and conditions that may be encountered during the intensive nursery soil survey.

Make an accurate, up-to-date nursery map - One of the easiest ways to produce a map is to obtain a recent aerial photograph of your nursery from the local USDA - Agricultural Stabilization and Conservation Service (ASCS), SCS, or County Extension office. Enlargements of the aerial photos can be obtained from the master files in the Salt Lake City Office of the ASCS. A working map can be produced by outlining the boundaries of the nursery, and then enlarging or reducing it on a copying machine (Figure M). The scale of the map can be determined by measuring the distance between two easily recognizable landmarks on the ground, and comparing that distance to the map distance.
Establish nursery management units - A management unit, often called a "block", is the smallest area that can be managed for a particular crop. Blocks are usually controlled by roads, irrigation lines, windbreaks, or other features of natural topography. For example, the nursery blocks at the Colorado State Forest Nursery in Ft. Collins are determined by the location of the surrounding windbreaks (Figure M). The nursery blocks will delineate the sampling populations for the soil survey, and should be identified with a number or letter to aid the sampling process. The intensive field analysis and soil samples for testing will be collected within the boundaries of these blocks.

Determine soil survey sampling criteria - Before the survey can begin, it is necessary to identify the physical, chemical, and biological conditions ("limiting factors") that affect seedling growth at your nursery. Some of these are standard for most forest and conservation nurseries, but others will be unique to specific sites. Note that these sampling criteria are different from those used in standard SCS surveys. Some typical examples include:

Physical Factors

- Depth of arable soil (Figure N)
- Soil texture
- Soil structure
- Compaction layers

Figure M. Maps for soil surveys can be made from aerial photos and the nursery blocks can be superimposed.
Chemical Factors

- Soil reaction (pH)
- Electrical conductivity
- Aluminum saturation
- % Calcium carbonate

Biological Factors

- High populations of soil pathogens
- Proper mycorrhizal fungi
- Stubborn weeds

Figure N. The soil sampling grid at Coeur d'Alene nursery was oriented around the irrigation system.
Some of these factors (depth, texture) can be obtained by an on-site soil survey, and others (chemical content, pathogen populations) must be determined through soil testing.

Lay out a sampling grid for the survey - Although the sampling locations should not be biased, it is best to use a regularly-spaced pattern that will insure that they cover the entire nursery block. This insures that variations in soil conditions are adequately represented in the sample. Each sampling point can be identified by block and sampling point number from the grid. Referencing the grid to the irrigation lines is a good idea, so that the sampling points can be relocated easily. The number of samples that are needed within each block is primarily a function of soil variation, time, and economics. For example, a sampling grid at 100 ft. X 100 ft. intervals has been used at Forest Service nurseries, which amounts to about 9 sample points per acre (Figure N). Nurseries that are lucky enough to have large areas of uniform soil can get by with fewer samples; in that case, the sampling grid could be expanded to 200 ft. X 200 ft., or about 4 sample points per acre.

The Soil Management Plan will be only as good as the data gathered during the survey, but the time to do the sampling and the cost of laboratory soil analysis are always limiting. It may be most economical to survey only a few blocks of the nursery at a time; this can often be accomplished during the rest year of the rotation. In this way, the entire nursery can be surveyed in a few years and the cost of the laboratory analysis can be spread out.

After you have constructed your soil map and have decided on a sampling design, you are ready to begin the soil survey itself. The next article in this series, Conducting the Soil Survey, will be presented in the July, 1995 Issue of FNN.

Sources:

The following publications are featured here because they are of special interest to nursery folks. If you would like a copy, there are two different ordering procedures. **Special Order (SO)** publications are either too long or too expensive for us to provide free copies, but prices and ordering instructions are provided here and following the individual listings in the New Nursery Literature section. **Numbered** or **Lettered** publications can be requested by circling the appropriate listing on the Literature Order Form and returning it to me.

This was one of my primary references for Volume One of the Container Tree Nursery Manual, and contains useful, easy-to-read information on greenhouse construction and operation. This 3rd revision of this softbound book features many helpful tables, illustrations, and appendices. It is a “must have” for all container nurseries, and for the price is a real bargain.

COST: $25.00

ORDER FROM: Northeast Regional Agric. Engineering Service

Cooperative Extension

152 Riley-Robb Hall

Ithaca, NY 14853-5701

PHONE: 607-255-7654

FAX: 607-255-4080

This journal contains technical articles on all aspects of revegetation and restoration, from seed collection and propagation to establishment techniques. It also contains a comprehensive directory of commercial seed and plant sources and advertisements for nurseries and restoration contractors. The new standard 8x11 inch color format is both attractive and readable. A one-year subscription for two issues is extremely reasonable:

COST: $9.00
($12.00 foreign)
ORDER FROM: Hortus Northwest
P.O. Box 955
Canby, OR 97013
PHONE: 503-266-7968
FAX: 503-399-6173

This colorfully illustrated softbound book features research and management tips on ways to cut back on pesticides and fertilizers without cutting yields, ways to apply chemicals more efficiently, and ways to determine which might leach to groundwater. This information is presented in an easy-to-read manner and should be an addition to any nursery's library - especially, considering the price!!

COST: $5.00
ORDER FROM: University of Illinois
Ag. Publication Office
69-IR Mumford Hall
Urbana, IL 61801
PHONE: 217-333-2007
FAX: 217-244-7503

This handy hardbound book contains chapters on tractors and self-propelled machinery and a wide range of sowing, cultivating, and harvesting equipment including operation and maintenance. For the container nursery, it has a couple of chapters on greenhouse equipment. I found "The Workshop" and "Power for Horticulture" chapters particularly useful because they explain tools and maintenance right down to the types of metals and nuts and bolts used for fabrication. Numerous black and white photos and illustrations make this publication even more practical.

COST: $39.45
ORDER FROM: Diamond Farm Enterprises
50.50 (CAN)
PO Box 537
Alexandria Bay, NY 13607

PHONE: 613-475-1771
FAX: 613-475-3748

This hardbound book discusses holistic disease control through management of your propagation structure, environmental control equipment, and cultural procedures. In particular, I like the author's ecophysiological approach to managing plant stress and key environmental factors, such as temperature and humidity, as the key to disease control.

COST: $79.00
ORDER FROM: APS
99.00 (foreign)
3340 Pilot Knob Road
St. Paul, MN 55121-2097

PHONE: 800-328-7560
FAX: 612-454-0766

32 - Forest Nursery Notes - January 1995

This softbound, color-illustrated book is, as the names states, oriented to the ornamental and landscape industry but the basic principles also apply to forest and conservation species. It is particularly useful to help answer all those questions that nurseries get from homeowners who expect them to know everything about all kinds of plants.

COST: $32.00
ORDER FROM: ANR Publications
University of California
6701 San Pablo Avenue
Oakland, CA 94608-1239
PHONE: 510-642-2431
FAX: 510-643-5470

This softbound book is a revision of the 1972 manual "Nursery Practice", and covers the propagation of both bareroot and container forest nursery stock. The chapters range from Nursery Policy and Planning, to Lifting, Storage, Handling, and Despatch and are illustrated in B/W with some color photographs. Although the use of metric units and the fact that the pesticides mentioned only apply to Great Britain make some adjustments necessary, nursery managers will find much useful information in this handy reference.

COST: $39.30
ORDER FROM: HMSO Publications Centre
25.00 pounds
PO Box 276
London
GREAT BRITAIN SW8 SDT

January 1995 - Forest Nursery Notes - 33

This softbound book presents information about the types of equipment that are currently being used in Site Preparation, Direct Seeding, Planting, and Protection and Growth Enhancement Products. Each category of equipment has sections that discuss its Function, Description, Advantages, Disadvantages, Specifications, and Sources. Numerous black and white drawings and photographs illustrate each piece of equipment and help to show how they are used.

COST: FREE
ORDER FROM:
USDA Forest Service
Technology and Development Center
Ft. Missoula, MT 59801
PHONE: 406-329-3900
FAX: 406-329-3719

This softbound publication contains 18 papers on the theme of “Changing Forestry Practices -Meeting the Challenges”, which address current reforestation policy in Canada and the US. Ralph only has a limited number of copies, so contact him soon if you want one.

COST: FREE
ORDER FROM:
Ralph Huber
B.C. Ministry of Forests
3-31 Bastion Square
Victoria, BC
CANADA V8W 3E7
PHONE: 604-3 87-8942
FAX: 604-387-1467

This proceedings is a compilation of 43 papers which were presented at the Southern and Northeastern Forest Nursery Association, Western Forest Nursery Association, and Forest Nursery Association of British Columbia conferences during 1994. The technical content of these papers covers a wide range of topics on bareroot and container seedling culture, ranging from seed collection and processing to reforestation trends. The Proceedings is currently in press and should be available in a couple of months.

This latest volume in the series took over 2 years to complete and will hopefully be worth the wait. Featuring many color photographs and other useful illustrations, this softbound book covers the basics of starting a container nursery in 5 chapters: Initial Planning and Feasibility Assessment; Site Selection; Nursery Design and Site Layout; Environmental Controls and Seedling Production Equipment; and Nursery Management. It is currently at the printers and should be ready for distribution in another month or so.

This handsome softbound book replaces the previous directory that was published back in 1987. It consists of two sections. The first lists nurseries by state with complete addresses, information on ownership type, stock type, seedling distribution, and potential production. The second listing offers information on the various classes of seedlings produced as well as special nursery products and services. Tables and graphs of changes in nursery ownership since the previous directory and seedling distribution by ownership category help show the development of the nursery industry and current trends. This handy reference will be a useful addition to everyone's library.

Although this popular softbound book had been out of print for many years, it remains a valuable reference for the bareroot propagation of hardwood tree seedlings. The new emphasis on biodiversity and ecosystem management has created an increasing demand for broadleaved trees, and so the Forest Service decided to reprint this book now instead of waiting for a complete rewriting. Major sections include soil management; seed; seedbed preparation, sowing, and care; vegetative propagation; nursery protection: inventory; and seedling handling. Of course, pesticides and their use have changed considerably in the past 30 years and so an extensive section of updated information is included as a preface and in the appendices.
COME AND GET THEM! We have been going through our stock of nursery publications and would like to get rid of surplus copies. You can order a free copy of any of the following by circling the appropriate letter on the Literature Order Form on the back page and returning it to me. Note that supplies vary, and so orders will be filled on a first-come, first-served basis.

This pamphlet summarizes tree planting, timber stand improvement, and nursery production activities on all ownerships of forest land in the US. A national summary discussing historical trends and national statistics is followed by tables of specifics by state and ownership category.

#F. Tree Planters’ Notes, Volume 44, Number 1 (Winter 1993)
#G. Tree Planters’ Notes, Volume 44, Number 2 (Spring 1993)
#H. Tree Planters’ Notes, Volume 44, Number 3 (Summer 1993)
#I. Tree Planters’ Notes, Volume 44, Number 4 (Fall 1993)
#J. Tree Planters’ Notes, Volume 45, Number 1 (Winter 1994)

If you would like to receive Tree Planters’ Notes on a regular basis, clip out this order form, fill it out, and send it in (Figure O):

Superintendent of Documents Subscriptions Order Form

☐ YES, please send me the following indicated subscriptions:

subscription(s) to TREE PLANTERS NOTES for $5.00 each per year (domestic) or $6.25 per year (foreign)

☐ New ☐ Renewal

1. The total cost of my order is $_____. All prices include regular domestic postage and handling and are subject to change. International customers please add 25%.

Please Type or Print

2. (Company or personal name)

(Additional address/intention line)

(Signature)

3. Please choose method of payment:

☐ Check payable to the Superintendent of Documents

☐ GPO Deposit Account

☐ VISA, CHOICE or MasterCard Account

(Credit card expiration date)

(Signature)

Products and Services

A New Postemergence, Nonselective Herbicide

Finale® (glufosinate) is now registered for use in nursery seedbeds and noncrop areas and controls both annual and perennial weeds, although thorough coverage is required. It is chemically similar to Roundup® (glyphosate) and is faster acting, but with limited systemic activity, is less effective on tougher perennials. Finale® is applied like Roundup®, as a directed or shielded spray, with precautions not to contact foliage or bark of the crop plants. It also is inactivated upon contact with the soil and so has no residual. As with all new pesticides, send for a copy of the product label to get more detailed information before considering use.

Source:

Root Pruning Chemical

By now, I'm sure you have seen or heard about the use of copper compounds to chemically root prune container seedlings (Figure P). A new product, called Spin Out®, is being marketed by the Griffin Corporation. Although many homemade copper compounds have been used, Spin Our is the only commercially available copper product that is registered for controlling root development in container tree seedlings. It is currently registered in the US, Australia, New Zealand, and Japan and registration is pending in Canada. Spin Out® can be applied to the inside wall of the cavities in either styrofoam blocks or plastic containers, where it prunes the lateral roots and creates a more fibrous root system. Chemical root pruning offers several other biological and operational advantages:

* Improved water and nutrient uptake
* Easier extraction from containers during harvesting
* Reduces the possibility of root disease transmission in used containers
* More stable trees after outplanting

Figure P Roots can be chemically pruned by coating the inside of the container cavity with copper compounds.
Growing Media with Coconut Fiber

Nurseries in tropical countries have been using the coir pith from the husks of coconuts as a component of their growing media for many years. Now, the Scotts Company has introduced a new line of media based on this totally renewable resource. Sphagnum peat moss has traditionally been the standard basis for all artificial soils but trials at Michigan State and North Carolina State University have shown equal or superior performance. Coir pith wets faster and more thoroughly because its fibers do not initially repel water like peat fibers, and these new media also shrink less than peat-based products. Greater total porosity means better root growth and plug formation, and the cation exchange capacity of coir mixes is equal to or greater than typical peat-vermiculite media. Because coir is inherently free from debris sometimes found in peat moss, containers fill more easily. Growers also report fewer problems with algae and fungus gnats when using coir-based media.

Of course, the true test of any product is how well it works under your own operational conditions. For more information of Redi-

Source:
Herzinger, K. 1994. Grow quality forest seedlings with Spin Outs. Houston, TX: Griffin Corp.

Computer-assisted Transplanting

Transplanting seedlings is one of the oldest cultural practices in forest and conservation nurseries. In nurseries during the first half of this century, all seedlings were transplanted at least once (sometimes twice) and it was always done by hand (Figure Q). In modern nurseries, almost all transplanting is now done mechanically. The Silver Mountain Equipment company has developed a way to convert standard transplanters to computer drive systems that increase the speed and efficiency of transplanting, which means higher quality transplant stock. Traditionally, mechanical transplanting equipment has lacked a ground drive system.
that will not slip with changes in surface soil conditions or during wet weather. The new computer drive system provides steady measured ground speed which permits accurate spacing of the transplants and virtually eliminates J-roots with properly adjusted equipment. At the present time, Silver Mountain is offering custom conversion of existing transplanters, but they have also been approached by commercial manufacturers to supply the Computer Drive Systems under a licensing agreement. For more information, contact:

Jim Heater
Silver Mountain Equipment, Inc.
4672 Drift Creek Road, SE
Sublimity, OR 97385
PHONE: 503-769-7127
FAX: 503-769-3549
Health and Safety

Back Belts May Not Protect While Lifting

Nursery work often requires long hours of bending and lifting, especially during the seedling harvesting, grading, and shipping period. In the past few years, you can see many nursery workers wearing back braces, and they swear that they offer back support. But the following article casts serious doubt on that assertion:

New Report Says Back Belts May Cause Harm, by Melissa Steineger

Everywhere you look these days it seems people are wearing back supports, those black nylon belts often with suspenders, that everyone from grocery store cashiers to truck drivers have donned. No wonder, since nationally the number of complaints about low back pain are second only to the common cold.

But a new federal report says back belts “do not mitigate the hazards to workers posed by repeated lifting, pushing, pulling, twisting, or bending” and “may produce temporary strain on the cardiovascular system”. That jibes with what chiropractor Dr. David A. Torkko, D.C. has found. “Back braces don’t protect the back,” he says unequivocally. “We don’t recommend that our patients wear them.”

Back belts, weight belts, or back braces all work by increasing pressure on the abdominal cavity, thus assisting the muscles holding up the spine. Their therapeutic use may have begun with corsets used to help patients with back pain in earlier days. But what Torkko has found is that some patients rely on belts so heavily that their muscles actually atrophy because the belt takes over the work of the muscles. A similar brace, the cervical collar, has been used so extensively by patients, he says, that when the collar is removed they can no longer hold up their heads.

Cynthia Alvarado, M.S., O.T.R./L., an occupational therapist at Portland Rehabilitation Center, has seen similar problems. Belts, Alvarado allows, can be useful as a reminder to lift properly for worker whose jobs requires frequent lifting. But, she adds, good lifting practices are better for the back. Used properly, she says, belts should be left dangling from the shoulder straps and loosely wrapped around the waist, then cinched very tight for actually lifting. Instead, many workers with relatively sedentary jobs are leaving the belts on all day to relieve low back pain.

To physical therapist Joe Keeney, belts offer virtually nothing. “Our theory here,” says Keeney, who also works at Portland Rehabilitation, “is that you have to create a lumbar support with your muscles. Strengthening abdominal muscles would be a better solution than back belts.”

“These devices are being marketed as a solution to back injury, and the existing scientific evidence does not support this claim.” says Dr. Linda Rosenstock, Director of the National Institute of Occupational Safety and Health (NIOSH). NIOSH recently reviewed existing studies of back belt use to evaluate claims that back belts can reduce work-related back injuries. In fact, the NIOSH study indicates the belts can do more harm than good because workers think they are protected and may attempt to lift more than they can. NIOSH researchers also uncovered indications that a tightly fitted weight belt can put a strain on the cardiovascular system by increasing heart rates.
and blood pressure levels during exertion. The study, which did not consider previously injured workers whose doctors have prescribed back belt use, "does not recommend the use of back belts to prevent injuries among uninjured workers and does not consider back belts to be personal protective equipment." "People wear them because they think they are protective," says Marie Haring Sweeney, chairwoman of the group that conducted the NIOSH study. "The data really doesn't support that."

For a free copy of the NIOSH Working Group report "Workplace use of back belts", contact:

NIOSH Publications
Mail Stop C-13
4676 Columbia Parkway
Cincinnati, OH 45226-1998
PHONE: 800-356-4674
FAX: 513-533-8573

Source:
Portland, OR: In Balance Magazine (Winter 1994-1995) 2(3): 1,12. Reprinted with permission. No portion of this article may be photocopied, reprinted, reproduced for electronic media or otherwise reproduced without express written permission of the author.
New Nursery Literature

Please obtain these articles from your local forestry library or literature service if at all possible. Numbered articles can also be ordered directly, using the Literature Order Form on the last page --just circle the appropriate number and return form to me. These free copies are a technology transfer service of USDA Forest Service, State and Private Forestry. Items bordered with asterisks are copyrighted and require a fee for each copy, so you will only be sent the title page and abstract. If you desire the entire article, follow the ordering instructions that follow the abstract.

Special Order (SO) articles or publications must be ordered directly from the publisher. Prices and ordering instructions follow each listing.

Bareroot Production

5. Portable root wash station. Fawcett, R.; Paterson, J. Ontario Ministry of Natural

Business Management

17. Silvicultural systems - changes and trends. Murphy, B. Forest Nursery Association of British Columbia, proceedings of 1993 meeting, p. 5-10. 1994. Due to changes in forest management practices, demand for seedlings will decline, customer needs will be more diverse and quality seedlings will be in high demand.

20. **What can we do to protect our workers from heat stress now that summer is here?** The Digger 38(6):36-37. 1994.

(BO) **Hazard communications manual: a suggested model program.** American Association of Nurserymen. 1993? A 70-page looseleaf binds to help you comply with OSHA Hazard Communication Standard. Contents: Introduction to the Federal OSHA hazard communication standard; Summary of OSHA hazard communication standard and compliance checklist; Suggested written hazard communication program; Hints on developing an employee training program; How to read and understand material safety data sheets. ORDER FROM: American Association of Nurseryman, 1250 I Street NW, Suite 500, Washington, DC 20005. Phone (202) 789-2900, Fax (202) 7891893. Price: $40 to members, $80 to nonmembers + $2.50 S&H.

28. **Pepper transplants are excessively damaged by brushing.** Latimer, J. G. HortScience 29(9):1002-1003. 1994. Mechanical damage caused by brushing was excessive for the small amount of growth regulation provided.

46 - forest Nursery Notes - January 1995

Diverse Species

(SO) **Hortus Northwest: A Pacific Northwest native plant directory and journal.** Hortus Northwest, Canby Oregon. Contains directory of seed and plant sources as well as technical articles on revegetation and restoration. Semiannual subscription costs $9.00 per year ($12.00 foreign) from Hortus Northwest, P.O. Box 955, Canby, OR 97013. Phone: (503) 266-7968. Fax: (503) 399-6173.

Fertilization and Nutrition

General and Miscellaneous

(SO) **Forest nursery practice.** Aldhous, J. R.; Mason, W. L. Forestry Commission (Great Britain), Bulletin 111. 268 p. 1994. A revision of 1972 edition. Sections: Nursery policy and planning; Selection layout and formation of a nursery; Forest nursery soils; Plant nutrition; Seed; Production of bareroot seedlings and transplants; Mycorrhizas, actinorhizas and rhizobia; Production of undercut stock; Container production of tree seedlings; Vegetative propagation; Irrigation; Nursery weed control; Protection against climatic damage, fungal diseases, insects and animal pests; Lifting, storage, handling and despatch; Legislation and the nursery manager. ORDER FROM: HMSO Publications Centre, P.O. Box 276, London, SW8 8DT Great Britain. Price: 25 British Pounds or apx. $39.30 U.S.

(50) **Hardwood nursery guide.** Williams, R. D.; Hanks, S. H. USDA Agriculture Handbook 473. 78 p. 1994 revised. Sections: Soil management; Seed; Seedbed preparation, sowing, and care; Vegetative propagation; Nursery protection; Inventory; Seedling handling. ORDER FROM: Tom Landis, USDA Forest Service, State and Private Forestry, P.O. Box 3623, Portland, OR 97208. Free.

Genetics and Tree Improvement

Mycorrhizae and Beneficial Microorganisms

Nursery Structures and Equipment

105. Get your greenhouses rolling to higher profits. Davis, T. Greenhouse Manager 13(7):69-74. 1994. Carts save you money by lowering labor costs and by speeding up deliveries. They may be racks that carry plants, wagons with fewer shelves, electric vehicles or monorail systems.

116. **Nursery drawings available from the Missoula Technology and Development Center.** Hallman, D. Tree Planters' Notes 45(1):17-20. 1994. Engineering drawings for 53 types of nursery equipment that have been developed or improved by Forest Service nurseries are available.

118. **Plastic lumber.** Van Veen, K. International Plant Propagators' Society, combined proceedings, 1993, 43:294. 1994. Lumber from recycled plastic was tested for greenhouse benches. It is expensive and difficult to work with, but lasts forever.

(SO) **Machinery for horticulture.** Bell, B.; Cousins, S. Farming Press. 295 p. 1991 ~ Chapters: Tractors and power units; Engines; Lubrication and cooling; Starting and charging systems; Transmissions; Steering, wheels and tires; Hydraulic systems; Tractor maintenance; Ploughs and ploughing; Cultivation machinery; Fertilizer distributors; Drills and planters; Sprayers; Grass cutting machinery; Turf care equipment; Glasshouse equipment; Irrigation; Vegetable and fruit machinery; Machinery for estate and grounds maintenance;The workshop; Power for horticulture. ORDER FROM: Diamond Farm Enterprises, P.O. Box 537, Alexandria Bay, NY 13607. Phone (613) 475-1771. Fax: (613) 475-3748. Price: $39.45 U.S. or $50.50 Can. (includes S&H).

Outplanting Performance

125. **Comparisons of selected and cloned plantlets against seedlings for rehabilitation of saline and waterlogged discharge zones in Australian agricultural catchments.** Bell, D. T.; McComb, J. A.; van der Moezel, P. G.; Bennett, I. J.; Kabay, E. D. Australian Forestry 57(2):6975. 1994.

139. **Tree shelters improve establishment on dry sites.** Bainbridge, D. A. Tree Planters’ Notes 45(1):13-16. 1994. TUBEX Treeshelters have proved to be very beneficial for establishment of mesquite, four-winged saltbush, ocotillo, and many other species.

Pest Management

196. *Why you should consider using smoke fumigants.* Brock, D. Greenhouse Manager 13(7):77-78. 1994. 4 smokes are available for greenhouse use and are labeled for most greenhouse crops. Re-entry interval can be as little as 4 hours.
Managing diseases in greenhouse crops. Jarvis, W. R. American Phytopathological Society. 288 p. 1992. Chapters: Greenhouse structures and equipment; Growing systems; The greenhouse environment and crop protection; Environmental stress and predisposition to disease; Eliminating inoculum; Limiting disease spread; Disease escape; Resistant germ plasm; Biological Control; Integrated disease management.

Pests of landscape trees and shrubs: an integrated pest management guide. Dreistadt, S. H.; Clark, J. K.; Flint, M. L. University of California, Division of Agriculture and Natural Resources, Publication 3359. 327 p. 1994. Chapters: Designing an IPM program; Growing healthy trees and shrubs; Insects, mites, and snails and slugs; Diseases; Abiotic disorders; Weeds; Nematodes; Problem solving tables.

ORDER FROM: ANR Publications, University of California, 6701 San Pablo Avenue, Oakland, CA 94608-1239. Phone (510) 642-2431. Fax (510) 643-5470. Price: $32 (payable to UC Regents).

Pesticides

Seedling Harvesting and Storage

Seedling Physiology and Morphology

Seeds

Soil Management and Growing Media

Vegetative Propagation and Tissue Culture

Water Management and Irrigation

Weed Control

(30) Managing pesticides and nitrogen in southern pine nurseries and some ways to reduce the potential for groundwater contamination. South, D. B. Auburn University, School of Forestry, Departmental Series 14. 18 p. 1994. ORDER FROM: Auburn University, School of Forestry, Auburn, AL 36830. Free.

Literature Order Form

Please fill out a separate order form for each person ordering literature (copy this form if necessary). Circle the articles in which you are interested, and either FAX or mail the form back to us. You should receive your requests within a few weeks. For items that require a copyright fee, you will receive the title page with the abstract and ordering instructions. If you have questions about your requests, you can contact the Portland Habilitation Center-see address on inside cover.

Position __

Department ___

Nursery/Company ______________________________________

Mailing Address _______________________________________

Street Address ___

City ___

State/Province ___

Country _____________________________ Zip/Postal Code __________________________________

Phone _____________________________ Fax _____________________________

DG Address __

1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154

(Continued on back)

January 1995 - Forest Nursery Notes - 83
Return To:
Tom D. Landis,
Western Nursery Specialist
USDA-Forest Service, CF
P.O. Box 3623
Portland, OR 97208-3623 USA
FAX: 503-326-5569