PROPAGATION OF NORTH AMERICAN TRILLIUMS

WILLIAM CULLINA

Yellow trillium (Trillium luteum)

KEY WORDS:
Liliaceae, nursery production, seed, vegetative propagation

NOMENCLATURE:
Gleason and Cronquist (1991); Case and Case (1997)

Woodland wildflowers are a special group of plants that have evolved to withstand the rigors of a life under trees. At Garden in the Woods, the botanic garden and headquarters for the New England Wild Flower Society, we have developed spectacular woodland gardens featuring plants native mostly to eastern North America. Every spring, the ground beneath a tall canopy of 120-y-old oaks (Quercus L. [Fagaceae]) and eastern white pines (Pinus strobus L. [Pinaceae]) is awash with violet wood phlox (Phlox divaricata L. [Polemoniaceae]), sky blue Virginia bluebells (Mertensia virginica L. [Boraginaceae]), pale pink spring beauties (Claytonia virginica L. [Portulacaceae]), buttercup yellow celandine poppy (Stylophorum diphyllum (Michx.) Nutt. [Papaveraceae]), and fresh green croissiers of ostrich fern (Matteuccia struthiopteris (L.) Todaro. [Onocleaceae]), but no wildflower garners more rapt attention from visitors than the various Trillium spp. L. [Trilliaceae] scattered here and there. Trilliums are not the most brilliantly colored or flamboyant plants in our woodlands, but they possess a certain dignity and balanced proportion that has made them a favorite of wildflower enthusiasts for generations.

Part of trillium's allure comes from their slow yet deliberate pattern of growth. Plants grow from a knobby brown rhizome set 5 to 15 cm (2 to 6 in) below the soil surface. As the spring sun warms the forest soil, a large bud at the apex of this rhizome begins to elongate rapidly. The bud is composed of a half dozen sheaths surrounding 1 or 2 stems. As the sheaths poke through the soil and duff, they wither, leaving concentric abscission scars that circle the rhizome. Dormant axillary buds formed where these sheaths attach to the rhizome can give rise to small secondary rhizomes that develop eventually into flowering stems. Consequently, species prone to this axillary bud development can form large, many-stemmed clumps after several decades. Each trillium stem
continues to expand upward after it has pushed out of the sheaths, mature ones unfurling a whorl of 3 leaves subtermining a single, 3-petalled, red, pink, yellow, or white flower. Mature trilliums range in height from less than 1.2 cm (1 in [the nearly stemless decumbent T. decumbens Harbison]) to over 40 cm (16 in [yellow trillium, T. luteum (Muhlenberg) Harbison]). In all cases the whorl of oval, thorny, or lance-shaped leaves is carried nearly parallel with the sky above, so plants can take maximum advantage of any sun that filters down through the tree canopy.

The genus *Trillium* contains approximately 48 species: 6 in Asia, 7 in western North America, and 35 in eastern North America (Case 1997). The great broadleaf forests of the southeastern US are especially rich in species, many of which are rare or fairly localized in distribution. All but a few North American species prefer a slightly acidic to neutral pH. The genus *Trillium* can be neatly divided into 2 groups: subgenus *Trillium*, bearing stalked or pedicellate flowers, and the almost completely southeastern US subgenus *Phyllantherum*, with stalkless or sessile flowers that sit between the whorl of leaves. Propagation and culture are generally the same for both groups.

Trilliums are slow growing forest species. In cultivation, plants take 5 to 8 y to reach blooming size from seeds, and I would surmise that wild plants may take up to 10 y to reach maturity under less than ideal conditions. All North American species are ant-dispersed (and occasionally water-dispersed), meaning that rates of migration are extremely slow (30 to 90 cm per y [1 to 3 ft]) and individual populations are easily fragmented and cut off from suitable habitats by road construction, land clearing, and other development. Once eliminated from a site, it is very difficult for plants to recolonize it again. Wild populations are under threat from development, mining, industrial forestry, and wild collection. Their slow growth and horticultural appeal has made them a target for large scale commercial collecting, especially in the southern Appalachian Mountains, where untold thousands of rhizomes are dug each year for sale as bare root “bulbs” in Europe and North America.

NEW ENGLAND WILD FLOWER SOCIETY

www.newfs.org

The New England Wild Flower Society is a non-profit plant conservation organization founded 100 y ago in response to uncontrolled wild collection of vulnerable native plants. Part of our mission is to seek ways to reduce collection pressures on wild populations by developing protocols to make large-scale nursery propagation feasible. Our native plant nursery raises and sells 35,000 plants annually, representing over 500 native species and cultivars. We have paid particular attention to trilliums and lady-slipper orchids, because their slow growth and desirability make them especially vulnerable to over collection.

PROPAGATION

Trilliums can be propagated by rhizome division or by seeds, and tissue-culture shows some promise, though practical and cost-effective protocols are still being developed. We raise our plants chiefly from seeds, as rhizome division is invasive and requires large numbers of stock plants for a sustainable yield. If a sufficient number of stock plants are available, species like whippoorwill and showy trillium (*T. cuneatum* Rafinesque and *T. grandiflorum* (Michaux) Salisb.), which readily produce offsets, can be expected to furnish 2 to 6 saleable offsets per large rhizome on a 3- to 4-y rotation. The propensity to form offsets varies among individuals and populations so save and propagate your most rapidly multiplying clones.

Each pollinated trillium flower produces a fleshy, oval, pointed capsule that ripens in midsummer (approximately 65 to 90 d after anthesis, depending on species and growing conditions) atop the 3 persistent sepals. Capsules are either red, maroon, or yellow-green, depending on the species, and seeds can be collected when the seed coat has turned from green to tan or brown. We collect most of our seeds from stock beds in the nursery. Trillium seeds are 1.5 to 3 mm (0.06 to 0.12 in) in diameter, with a large, fleshy, oil-rich elaiosome designed to attract ants which carry seeds back to their nests, remove the elaiosome, and discard (“plant”) the seed. Each healthy capsule contains...
from 10 to 40 seeds, so a cultivated stand of 1000 flowering stems may yield from 10,000 to 40,000 seeds annually (Figure 1). Trillium seeds are what I term hydrophyllic or water-loving, meaning they are completely intolerant of dry storage. Ideally, fresh seeds should be sown immediately after cleaning, but they can be stored for up to 3 y if kept in dampened vermiculite placed in a sealed, refrigerated container (I use a self-sealing plastic bag placed inside a lidded jar). Slightly unripe seeds (seed coats that are just turning tan) are easier to clean, as the capsules are less mealy at this stage. Peel off the calyx, which will expose the seeds, then pinch the capsule walls between thumb and forefinger, squeezing out seeds. Though it seems labor-intensive, this method is fairly fast, and we can clean 20,000 seeds in an afternoon.

Trillium seeds germinate in 2 stages. First, a root emerges and grows 2.5 to 5 cm (1 to 2 in), then, after a period of cold stratification (80 to 100 d), a single, lance-shaped cotyledon emerges. With the exception of snow trillium (T. nivale Riddle) and some forms of bent trillium (T. flexipes Rafinesque), all eastern species require 2 y for complete germination. The root emerges after the first winter and the cotyledon after the second. Western species as well as the exceptions among the eastern flora require only 1 y, with the root emerging in the first fall after planting and the cotyledon the following spring. Solt (1996) discovered that a percentage of T. grandiflorum seeds, if harvested immature about 60 d after anthesis and kept in warm, moist conditions in the lab, will germinate in the pattern of the western species such as T. chloropetalum (Torrey) Howell—the root emerging after the first fall and cotyledons the following spring. We have tried Solt’s technique, and found that although we were able to get 20% of immature seeds to germinate the first fall when we sowed them under controlled temperature and moisture, field germination was not accelerated at all. The reasons for this are unclear, but may have to do with less consistent temperature and/or moisture levels as compared to the lab.

Our technique is to sow cleaned seeds in 23 X 30 X 8 cm deep (9 X 12 X 3 in) plastic flats (Dillon Half Flat, Dillon Products, Middlefield, Ohio) filled with Metro-mix 360 (30% to 40% medium grade vermiculite, 35% to 55% sphagnum peat moss, 10% to 20% bark ash, and 1% to 15% pine bark; The Scotts Co, Marysville, Ohio). Approximately 200 seeds are distributed over the mix, then covered with 6 mm (0.25 in) of additional Metro-mix and 6 mm (0.25 in) of #1 filter sand (a washed, coarse sand sold for swimming pool filters). We place our flats outdoors in shaded cold frames open to wind and rain and the coarse sand or fine gravel holds the growing medium and seeds in place. As the seed germinates, the sand is incorporated into the top layers of the medium, providing better water drainage around the seedling’s crown and discouraging damping-off diseases. We cover finished flats with floating row cover fabric (Reemay Inc, Old Hickory, Tennessee), and then a piece of half-inch hardware cloth (galvanized wire mesh) cut to make a lid that fits down over 9 flats. The row cover slows evaporation and prevents weed seeds from infiltrating the flats and the hardware cloth prevents rodent predation. (Mice and especially voles are major seed and rhizome predators in our nursery. In the wild, a colony of voles can quickly eliminate whole stands of trilliums and other woodland wildflowers.) We grow mostly T. grandiflorum, T. cuneatum and T. erectum L. (red trillium), as well as T. vaseyi Harbison (sweet Beth), T. luteum, T.

Ducks Unlimited Canada and Native Plant Solutions are developers and producers of Ecovars™ (ecological varieties of native species) for reclamation and naturalization purposes. Seeds in excess of Ducks Unlimited Canada’s requirements are marketed into the reclamation industry. Native Plant Solutions staff are experts in the development of reclamation mixtures and successful installation and maintenance of native grass stands.
by the fifth spring most of the trilliums have begun to occupy significant square footage in the nursery.

REFERENCES


AUTHOR INFORMATION

William Cullina
Nursery Manager and Propagator
New England Wild Flower Society
180 Hemenway Rd.
Framingham, MA 01701-2699
cullina@newfs.org
http://www.newfs.org